933 resultados para Time delay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of blasting is to produce optimum fragmentation for downstream processing. Fragmentation is usually considered optimum when the average fragment size is minimum and the fragmentation distribution as uniform as possible. One of the parameters affecting blasting fragmentation is believed to be time delay between holes of the same row. Although one can find a significant number of studies in the literature, which examine the relationship between time delay and fragmentation, their results have been often controversial. The purpose of this work is to increase the level of understanding of how time delay between holes of the same row affects fragmentation. Two series of experiments were conducted for this purpose. The first series involved tests on small scale grout and granite blocks to determine the moment of burden detachment. The instrumentation used for these experiments consisted mainly of strain gauges and piezoelectric sensors. Some experiments were also recorded with a high speed camera. It was concluded that the time of detachment for this specific setup is between 300 and 600 μs. The second series of experiments involved blasting of a 2 meter high granite bench and its purpose was the determination of the hole-to-hole delay that provides optimum fragmentation. The fragmentation results were assessed with image analysis software. Moreover, vibration was measured close to the blast and the experiments were recorded with high speed cameras. The results suggest that fragmentation was optimum when delays between 4 and 6 ms were used for this specific setup. Also, it was found that the moment at which gases first appear to be venting from the face was consistently around 6 ms after detonation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis broadly studies three crucial and rigorous inter-related control theoretical subjects: (i) Partial state estimation of linear systems; (ii) Stability analysis of time-delay systems with interval time-varying delays; and (iii) Functional observer design for time-delay systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief considers a new problem of designing reduced-order positive linear functional observers for positive time-delay systems. The order of the designed functional observers is equal to the dimension of the functional state vector to be estimated. The designed functional observers always nonnegative at any time and they converge asymptotically to the true functional state vector. Moreover, conditions for the existence of such positive linear functional observers are formulated in terms of linear programming (LP). Numerical examples and simulation results are given to illustrate the effectiveness of the proposed design method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active vibration control using time delay for a cantilever beam is developed in this paper. The equation of motion of the system is developed using the discrete standard formulation, and the discrete quadratic function is used to design the controller. The original contribution in this paper is using a genetic algorithm to determine the optimal time delay feedback for active vibration control of a cantilever beam. Simulations of the beam demonstrated that the genetic algorithm correctly identified the time delay which produced the quickest attenuation of unwanted vibrations for both mode one and mode two. In terms of frequency response, the optimal time delay for both modes reduced the resonant amplitude. In a mixed mode situation, the simulation demonstrated that an optimal time delay could be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, for the first time, electric vehicles are used for both the primary and secondary frequency controls to support power plants to rapidly suppress fluctuations in the system frequency due to load disturbances. Via networked control and wide-area communication infrastructures, multiple interval time-varying delays exist in the communication channels between the control center, power plant, and an aggregation of electric vehicles. By coordinating batteries’ state of charge control, the behaviors of the vehicle owners and the uncertainties imposed by the changes of the batteries’ state of charge are taken intoconsideration. A power system model incorporating multiple time-varying delays and uncertainties is first proposed. Then, a robust static output feedback frequency controller is designed to guarantee the resulting closed-loop system stable with an H∞ attenuation level. By utilizing a novel integral inequality, namely refined-Jensen inequality, and an improved reciprocally convex combination, the design conditions are formulated in terms of tractable linear matrix inequalities which can be efficiently solved by various computational tools. The effectiveness of the proposed control scheme is verified by extensive simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the robust stabilization and Hcontrol problem for a class of linear polytopic systems with continuously distributed delays. The control objective is to design a robust H controller that satisfies some exponential stability constraints on the closed-loop poles. Using improved parameter-dependent Lyapunov Krasovskii functionals, new delay-dependent conditions for the robust H control are established in terms of linear matrix inequalities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents two discrete sliding mode control (SMC) design. The first one is a discrete-time SMC design that doesn't take into account the time-delay. The second one is a discrete-time SMC design, which takes in consideration the time-delay. The proposed techniques aim at the accomplishment simplicity and robustness for an uncertainty class. Simulations results are shown and the effectiveness of the used techniques is analyzed. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the problem of passivity analysis of neural networks with an interval time-varying delay. Unlike existing results in the literature, the time-delay considered in this paper is subjected to interval time-varying without any restriction on the rate of change. Based on novel refined Jensen inequalities and by constructing an improved Lyapunov-Krasovskii functional (LKF), which fully utilizes information of the neuron activation functions, new delay-dependent conditions that ensure the passivity of the network are derived in terms of tractable linear matrix inequalities (LMIs) which can be effectively solved by various computational tools. The effectiveness and improvement over existing results of the proposed method in this paper are illustrated through numerical examples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packet losses. However, the nature of the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS. Due to the lack of support for prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. To address these problems, a new transport layer protocol called Reliable Real-Time Transport Protocol (RRTTP) is proposed in this thesis. As a UDP-based protocol, RRTTP inherits UDP’s simplicity and fast transmission features. To improve the reliability, a retransmission and an acknowledgement mechanism are designed in RRTTP to compensate for packet losses. They are able to avoid unnecessary retransmission of the out-of-date packets in NCSs, and collisions are unlikely to happen, and small transmission delay can be achieved. Moreover, a prioritized transmission mechanism is also designed in RRTTP to improve the real-time performance of NCS networks under congested traffic conditions. Furthermore, the proposed RRTTP is implemented in the Network Simulator 2 for comprehensive simulations. The simulation results demonstrate that RRTTP outperforms TCP and UDP in terms of real-time transmissions in an NCS over wireless networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many biological systems can switch between two distinct states. Once switched, the system remains stable for a period of time and may switch back to its original state. A gene network with bistability is usually required for the switching and stochastic effect in the gene expression may induce such switching. A typical bistable system allows one-directional switching, in which the switch from the low state to the high state or from the high state to the low state occurs under different conditions. It is usually difficult to enable bi-directional switching such that the two switches can occur under the same condition. Here, we present a model consisting of standard positive feedback loops and an extra negative feedback loop with a time delay to study its capability to produce bi-directional switching induced by noise. We find that the time delay in the negative feedback is critical for robust bi-directional switching and the length of delay affects its switching frequency.