986 resultados para Thermodynamic Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 +/- 0.13 K, 19.4 +/- 0.1 kJ mol(-1) and 60.1 +/- 0.1 J K-1 mol(-1), respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 +/- 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 +/- 5 J mol(-1) and 3.16 +/- 0.02 J K-1 mol(-1), respectively. The thermodynamic functions of the compound [H-T - H-298.15] and [S-T - S-298.(15)] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molar heat capacities of 2-(chloromethylthio)benzothiazole (molecular formula C8H6ClNS2, CA registry no. 28908-00-1) were measured with an adiabatic calorimeter in the temperature range between (80 and 350) K. The construction and procedures of the calorimeter were described in detail. The performance of the calorimetric apparatus was evaluated by heat capacity measurements on alpha-Al2O3. The deviation of experiment heat capacities from the corresponding smoothed values lies within 0.3%, whereas the uncertainty is within +/-0.5%, compared with that of the recommended reference data over the whole experimental temperature range. A fusion transition was found from the C-p-T curve of 2-(chloromethylthio)benzothiazole. The melting temperature and the molar enthalpy and entropy of fusion of the compound were determined to be T-m = (315.11 +/- 0.04) K, Delta(fus)H(m) = (17.02 +/- 0.03) kJ(.)mol(-1), and Delta(fus)S(m) = (54.04 +/- 0.05) J(.)mol(-1.)K(-1), respectively. The thermodynamic functions (H-T - H-298.15) and (S-T - S-298.15) were also derived from the heat capacity data. The molar fraction purity of the 2-(chloromethylthio)benzothiazole sample used in the present calorimetric study was determined to be 99.21 by fraction melting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-temperature heat capacities of myclobutanil (C15H17CIN4) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 368 K. The sample was observed to melt at (348.800 +/- 0.06) K. The molar enthalpy and entropy of the melting as well as the chemical purity of the substance were determined to be Delta(fus)H(m) = (30931 +/- 11) J.mol(-1), Delta(fus)S(m) = (88.47 +/- 0.02) J.mol(-1).K-1 and 99.41%, respectively. Further research of the melting process for this compound was carried out by means of DSC technique. The result was in agreement with that obtained from the measurements of heat capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat capacities (C-p) of five types of gasohol (50 wt % ethanol and 50 wt % unleaded gasoline 93(#) (E50), 60 wt % ethanol and 40 wt % unleaded gasoline 93(#) (E60), 70 wt % ethanol and 30 wt % unleaded gasoline 93(#) (E70), 80 wt % ethanol and 20 wt % unleaded gasoline 93(#) (E80), and 90 wt % ethanol and 10 wt % unleaded gasoline 93(#) (E90), where the "93" denotes the octane number) were measured by adiabatic calorimetry in the temperature range of 78-320 K. A glass transition was observed at 95.61, 96.14, 96.56, 96.84, and 97.08 K for samples from the E50, E60, E70, E80, and E90 systems, respectively. A liquid-solid phase transition and a solid-liquid phase transition were observed in the respective temperature ranges of 118-153 and 155-163 K for E50, 117-150 and 151-164 K for E60, 115-154 and 154-166 K for E70, 113-152 and 152-167 K for E80, and 112-151 and 1581-167 K for E90. The polynomial equations of Cp and the excess heat capacities (C-p(E)), with respect to the thermodynamic temperature, were established through least-squares fitting. Based on the thermodynamic relationship and the equations obtained, the thermodynamic functions and the excess thermodynamic functions of the five gasohol samples were derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the experimental measurements of the pressure (0.10 <p/MPa <10.0) and temperature (293.15 <T/K <393.15) dependence of the density and derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, the thermal pressure coefficient, and the pressure dependence of the heat capacity of several imidazolium-based ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]; 3-methyl-1-octylimidazolium tetrafluoroborate, [omim][BF4]; 1-hexyl-3-methylimidazolium hexafluorophosphate, [hmim][PF6]; 3-methyl-1-octylimidazolium hexafluorophosphate, [omim][PF6]; 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, [bmmim][PF6]; and 1-butyl-3-methylimidazolium trifluoromethansulfonate, [bmim][CF3SO3]. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length, the number of cation substitutions, and the anion influence on the properties under study. The influence of water content in the density was also studied for the most hydrophobic IL used, [omim][PF6]. A simple ideal-volume model was employed for the prediction of the imidazolium molar volumes at ambient conditions, which proved to agree well with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, experimental density measurements are reported along with the derived thermodynamic properties, such as the isothermal compressibility (?T), the isobaric expansivity (ap), and the thermal pressure coefficient (?v) for imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [C2mim][CF3SO3], 3-methyl-1-propylpyridinium bis(trifluoromethylsulfonyl)imide [C3mpy][NTf2], 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C3mpyr][NTf2], 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4mpyr][NTf2], and 1-methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imide [C3mpip][NTf2] in the pressure (0.10 <P/MPa <35.00) and temperature (293.15 <T/K <393.15) domains. These ILs were chosen to provide an understanding of the influence of the cation and anion on the properties under study. Experimental densities are correlated with the Tait equation with an average absolute relative deviation (AARD) better than 0.02 %. It is shown that experimental densities are in good agreement with the densities obtained by the predictive method previously proposed by us.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The speeds of sound in dibromomethane, bromochloromethane, and dichloromethane have been measured in the temperature range from 293.15 to 313.15 K and at pressures up to 100 MPa. Densities and isobaric heat capacities at atmospheric pressure have been also determined. Experimental results were used to calculate the densities and isobaric heat capacities as the function of temperature and pressure by means of a numerical integration technique. Moreover, experimental data at atmospheric pressure were then used to determine the SAFT-VR Mie molecular parameters for these liquids. The accuracy of the model has been then evaluated using a comparison of derived experimental high-pressure data with those predicted using SAFT. It was found that the model provide the possibility to predict also the isobaric heat capacity of all selected haloalkanes within an error up to 6%.