916 resultados para Theoretical study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF2+, SnCl2+, and SnO2+ using ab initio computer calculations. The ground states of SnF2+, SnCl2+, and SnO2+ are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF2+ dissociates into Sn2+ + F, the long range behaviour of the potential energy curves of SnCl2+ and SnO2+ is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T-e) to form SnF2+, SnCl2+, and SnO2+ from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO2+ and SnF2+ have been observed for prolonged oxygen (O-16(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF2) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl2+ has been detected for O-16(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl2) powder. To our knowledge, SnF2+ is a novel gas-phase molecule, whereas SnCl2+ had been detected previously by electron-impact ionization mass spectrometry, and SnO2+ had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758475]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Molecular Dynamics simulations and Quantum Mechanical calculations, we study the behavior of molecules with biophysical and pharmacological interest in solution and in phospholipid bilayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first stage of the photosynthetic process is the extraordinary efficiency of sunlight absorption in the visible region [1]. This region corresponds to the maximum of the spectral radiance of the solar emission. The efficient absorption of visible light is one of the most important characteristics of photosynthetic pigments. In chlorophylls, for example, the absorptions are seen as a strong absorption in the region 400-450 nm in connection with other absorptions with small intensities in the region of 500-600 nm. This work aims at understanding the essential features of the absorption spectrum of photosynthetic pigments, in line with several theoretical studies in the literature [2, 3]. The absorption spectra were calculated for H2-Porphyrin, Mg-Porphyrin, and Zn-Porphyrin, and for H2-Phthalocyanine and Mg-Phthalocyanine with and without the four peripheral eugenol substituents. The geometries were optimized using the B3LYP/6-31+G(d) theoretical model. For the calculation of the absorption spectra different TD-DFT calculations were performed (B3LYP, CAM-B3LYP, O3LYP, M06-2X and BP86) along with CIS (D). For the spectra the basis set 6-311++G (d, p) was used for porphyrins and 6-31+G (d) was used for the other systems. At this stage the solvent effects were considered using the simplified continuum model (PCM). First a comparison between the results using the different methods was made. For the porphyrins the best results compared to experiment (both in position and intensities) are obtained with M06-2X and CIS (D). We also analyze the compatibility of the four-orbital model of Gouterman [4] that states that transitions could be well described by the HOMO-1, HOMO, LUMO, and LUMO+1 molecular orbitals. Our results for H2-Porphyrin shows an agreement with other theoretical results and experimental data [5]. For the phthalocyanines (including the four peripheral eugenol substituents) the results are also in good agreement compared with the experimental results given in ref [6]. Finally, the results show that the inclusion of solvent eÆects gives corrections for the spectral shift in the correct direction but numerically small. References [1] R.E. Blankenship; “Molecular Mechanisms of Photosynthesis", Blackwell Science (2002). [2] P. Jaramillo, K. Coutinho, B.J.C. Cabral and S. Canuto; Chem. Phys. Lett., 516, 250(2011). [3] L. Petit, A. Quartarolo, C. Adamo and N. Russo; J. Phys. Chem. B, 110, 2398(2006). [4] M. J. Gouterman; Mol. Spectr., 6, 138(1961). [5] M. Palummo, C. Hogan, F. Sottile, P. Bagal∂a and A. Rubio; J. Chem. Phys., 131, 084102(2009). [6] E. Agar, S. Sasmaz and A. Agar; Turk. J. Chem., 23, 131(1999).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex formed by the tetracycline (TC) molecule with the Mg ion is able to prevent the replication of the genetic material in the bacterial ribosome, making an excellent antibiotic. In general, the absorption and emission spectra of TC are very sensitive to the host ions and the pH of the solvent that the set is immersed. However, the theoretical absorption spectrum available in the literature is scarce and limited to simple models that do not consider the fluctuations of the liquid. Our aim is to obtain the electronic absorption spectrum of TC and the complex Mg:TC in the ratio 1:1 and 2:1. Moreover, we analyze the changes in intensity and shifts of the bands in the systems listed. We performed the simulation using the classical Monte Carlo technique with the Lennard-Jones plus Coulomb potential applied to each atom of the both TC molecule and the Mg:TC complexes in water. The electronic absorption spectrum was obtained from the time-dependent density functional theory using different solvent models. In general, we obtained a good qualitative description of the spectra when compared with the experimental results. The Mg atom shifts the first band by 4 nm in our models, in excellent agreement to the experimental result of 4 nm. The second absorption band is found here to be useful for the characterization of the position where the ion attaches to the TC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, (thiosaccharine disulfide), bis[1,10dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV–Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit unterstreicht das Potential von Hybridfunktionalen (B3LYP) für die Untersuchung einer großen Bandbreite von Systemen. Durch die Einbeziehung der exakten Hartree-Fock Austauschenergie kann B3LYP für molekulare und kristalline Systeme eingesetzt werden. Zum Beispiel können stark korrelierte Systeme mit B3LYP erfolgreich erforscht werden. Die elektronische Struktur von PAHs wurde mit B3LYP Hybriddichtefunktionalen untersucht. Mit der ∆SCF-Methode wurden Elektronenbindungsenergien bestimmt, welche die mit UPS gewonnenen experimentellen Resultate bestätigen und ergänzen. Symmetrieeigenschaften der molekularen Orbitale wurden analysiert, um eine Zuordnung und Einschätzung der zugehörigen Signalstärke zu ermöglichen. Während σ-artige Orbitale nur schwer durch UPS-Messungen an dünnen Filmen detektiert werden können, bieten Rechnungen eine detaillierte Einsicht in die verborgenen Teile der Spektren.rnWeiterhin wurden π−π-Komplexe untersucht, welche von verschiedenen Donor- und Akzeptor-Molekülen gebildet werden. Die Moleküle basieren auf polyzyklischen, aromatischen Kohlenwasserstoffen. Für Ladungstransferkomplexe finden DFT Rechnungen ein Minimum in der Oberfläche der potentiellen Energie. Diese attraktive Wechselwirkung wird durch Coulombanziehung verursacht. Allerdings ist die Coulombanziehung nicht die stärkste Wechselwirkung in Ladungstransferkomplexen. Die Einbeziehung von van der Waals-Korrekturen verbessert den intermolekularen Abstand und die Bindungsenergie.rnEine Verkleinerung der intermolekularen Abstände führt zu einer großen Verschiebung der HOMO- und LUMO-Energie.rnAus der Klasse der kristallinen korrelierten Systeme wurden Rb4O6 und FeSe untersucht. Im Falle von Rb4O6 führen Ladungsordnung und Korrelationen zu einem isolierenden Grundzustand. Das hypothetische druckabhängige Phasendiagramm wurde untersucht. Eine Erhöhung des Drucks führt zu einer vergrößerten Bandlücke. Bei etwa 75 GPa wird die Bandbreite W größer als der Bandabstand U und das System nimmt einen homogen gemischt valenten Zustand mit teilweise besetzten π−π-Orbitalen an. Für Drücke ab 160 GPa wird W sehr viel größer als U und das System wird metallisch.rnIm Fall von FeSe finden wir eine korrelierte und isolierende Phase bei hohen Drücken, während das System bei niedrigen Drücken supraleitendes Verhalten zeigt. Die Berechnungen der Elektronenstruktur mit dem Hybridfunktional B3LYP führt zum korrekten halbleitenden Grundzustand in der NiAs- und MnP-Struktur von FeSe. Die Rolle der Korrelationen, der Stöchiometrie und der Nähe zum Magnetismus wird besprochen. Im Speziellen wird gezeigt, dass die Phase mit NiAs-Struktur starke lokale Korrelationen aufweist, was zu einem halbleitenden Zustand in einem weiten Druckbereich führt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present the gas-phase vibrational spectrum of vinylacetic acid with a focus on the ν = 1−5 vibrational states of the OH stretching transitions. Cross sections for ν = 1, 2, 4 and 5 of the OH stretching vibrational transitions are derived on the basis of the vapor pressure data obtained for vinylacetic acid. Ab initio calculations are used to assist in the band assignments of the experimental spectra, and to determine the threshold for the decarboxylation of vinylacetic acid. When compared to the theoretical energy barrier to decarboxylation, it is found that the νOH = 4 transition with thermal excitation of low frequency modes or rotational motion and νOH = 5 transitions have sufficient energy for the reaction to proceed following overtone excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging nanogenerators have attracted the attention of the research community, focusing on energy generation using piezoelectric nanomaterials. Nanogenerators can be utilized for powering NEMS/MEMS devices. Understanding the piezoelectric properties of ZnO one-dimensional materials such as ZnO nanobelts (NBs) and Nanowires (NWs) can have a significant impact on the design of new devices. The goal of this dissertation is to study the piezoelectric properties of one-dimensional ZnO nanostructures both experimentally and theoretically. First, the experimental procedure for producing the ZnO nanostructures is discussed. The produced ZnO nanostructures were characterized using an in-situ atomic force microscope and a piezoelectric force microscope. It is shown that the electrical conductivity of ZnO NBs is a function of applied mechanical force and its crystalline structure. This phenomenon was described in the context of formation of an electric field due to the piezoelectric property of ZnO NBs. In the PFM studies, it was shown that the piezoelectric response of the ZnO NBs depends on their production method and presence of defects in the NB. Second, a model was proposed for making nanocomposite electrical generators based on ZnO nanowires. The proposed model has advantages over the original configuration of nanogenerators which uses an AFM tip for bending the ZnO NWs. Higher stability of the electric source, capability for producing larger electric fields, and lower production costs are advantages of this configuration. Finally, piezoelectric properties of ZnO NBs were simulated using the molecular dynamics (MD) technique. The size-scale effect on piezoelectric properties of ZnO NBs was captured, and it is shown that the piezoelectric coefficient of ZnO NBs decreases by increasing their lateral dimensions. This phenomenon is attributed to the surface charge redistribution and compression of unit cells that are placed on the outer shell of ZnO NBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the theoretical study of the band alignment between the two components of a hybrid organic-inorganic solar-cell. The working organic molecules are metal tetra-sulphonated phthalocyanines (M-Pc) and the inorganic material is nano-porous ZnO growth in the 001 direction. The theoretical calculations are being made using the density functional theory (DFT) using a GGA functional with the SIESTA code, which projects electron wave functions and density onto a real space grid and uses as basis set a linear combination of numerical, finite-range localized atomic orbitals. We also used the DFT+U method included in the code that allows a semi-empirical inclusion of electronic correlations in the description of electronic spectra for systems such as zinc oxide.