832 resultados para Telegraph, Wireless.
Resumo:
We consider the problem of maximizing the secure connectivity in wireless ad hoc networks, and analyze complexity of the post-deployment key establishment process constrained by physical layer properties such as connectivity, energy consumption and interference. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by shared keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one extends the first problem by increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We prove that both problems are NP-hard and MAX-SNP with a reduction to MAX3SAT problem.
Resumo:
Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packet losses. However, the nature of the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS. Due to the lack of support for prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. To address these problems, a new transport layer protocol called Reliable Real-Time Transport Protocol (RRTTP) is proposed in this thesis. As a UDP-based protocol, RRTTP inherits UDP’s simplicity and fast transmission features. To improve the reliability, a retransmission and an acknowledgement mechanism are designed in RRTTP to compensate for packet losses. They are able to avoid unnecessary retransmission of the out-of-date packets in NCSs, and collisions are unlikely to happen, and small transmission delay can be achieved. Moreover, a prioritized transmission mechanism is also designed in RRTTP to improve the real-time performance of NCS networks under congested traffic conditions. Furthermore, the proposed RRTTP is implemented in the Network Simulator 2 for comprehensive simulations. The simulation results demonstrate that RRTTP outperforms TCP and UDP in terms of real-time transmissions in an NCS over wireless networks.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.
Resumo:
This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.
Resumo:
In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.
Resumo:
For the past decade, at least, varieties of small, hand held networked instruments have appeared on the global scene, selling in record numbers, and being utilized by all manner of persons from the old to the young; children, women, men, the wealthy and the poor and in all countries. Their presences bespeak a radical shift in telecommunications infrastructure and the future of communications. They are particularly visible in urban areas where mobile transmission network infrastructure (3G, 4G, cellular and Wi-Fi) is more established and substantial, options more plentiful, and density of populations more dramatic. These end user products—I phones, cell phones, Blackberries, DSi, DS, IPads, Zooms, and others – of the mobile communications industry are the latest, hottest globalized commodities. At the same time, wirelessness, or the state of being wireless, and therefore capable of taking along one's networks, communicating from unlikely spaces, and navigating with GPS, is a complex social, political and economic communications phenomenon of early 21st century life. This thesis examines the specter of being wireless in cities. It lends the entire idea an experimentally envisioned, historical and planned context wherein personalization of media tools is seen both as a design development of corporate, artistic, and military imagination, as well as a profound social phenomenon enabling new forms of sharing, belonging, and urban community. In doing that it asserts the parameters of a new mobile space which, aside from clear benefits to humankind by way of mobility, has reinscribed numerous categories including gender. Moreover, it posits the recognition of other, more nuanced theoretical spaces for complex readings of gender and gendered use, including some instantiation of the notion of 'network' itself as a cyborgian and gendered social form. Additionally, cities are studied as places where technology is not only quickly popularized, but is connected to larger political interests, such as the reading of data, tracking of information, and the new security culture. In so doing the work has been undertaken as an urban spatial analysis and experimental ethnography, utilizing architectural, feminist, techno-utopian, industrial and theoretical literatures as discursive underpinnings from whence understandings and interpretations of mobile space, the mobile office, networked mobility, and personal media have come, linking the space of cities to specific, pioneering urban public art projects in which voice, texting and MMS have been utilized in expressions of ubiquitous networks and urban history. Through numerous examples of techno art, the thesis discusses the 'wireless city' as an emerging cultural, socially constructed economic and spatial entity, both conceived and formed through historic processes of urbanization.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.
Resumo:
This paper elaborates on the use of future wireless communication networks for autonomous city vehicles. After addressing the state of technology, the paper explains the autonomous vehicle control system architecture and the Cybercars-2 communication framework; it presents experimental tests of communication-based real-time decision making; and discusses potential applications for communication in order to improve the localization and perception abilities of autonomous vehicles in urban environments.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Generally wireless sensor networks rely of many-to-one communication approach for data gathering. This approach is extremely susceptible to sinkhole attack, where an intruder attracts surrounding nodes with unfaithful routing information, and subsequently presents selective forwarding or change the data that carry through it. A sinkhole attack causes an important threat to sensor networks and it should be considered that the sensor nodes are mostly spread out in open areas and of weak computation and battery power. In order to detect the intruder in a sinkhole attack this paper suggests an algorithm which firstly finds a group of suspected nodes by analyzing the consistency of data. Then, the intruder is recognized efficiently in the group by checking the network flow information. The proposed algorithm's performance has been evaluated by using numerical analysis and simulations. Therefore, accuracy and efficiency of algorithm would be verified.
Resumo:
Wireless Sensor Networks (WSNs) are employed in numerous applications in different areas including military, ecology, and health; for example, to control of important information like the personnel position in a building, as a result, WSNs need security. However, several restrictions such as low capability of computation, small memory, limited resources of energy, and the unreliable channels employ communication in using WSNs can cause difficulty in use of security and protection in WSNs. It is very essential to save WSNs from malevolent attacks in unfriendly situations. Such networks require security plan due to various limitations of resources and the prominent characteristics of a wireless sensor network which is a considerable challenge. This article is an extensive review about problems of WSNs security, which examined recently by researchers and a better understanding of future directions for WSN security.
Resumo:
This thesis focuses on providing reliable data transmissions in large-scale industrial wireless sensor networks through improving network layer protocols. It addresses three major problems: scalability, dynamic industrial environments and coexistence of multiple types of data traffic in a network. Theoretical developments are conducted, followed by simulation studies for verification of theoretic results. The approach proposed in this thesis has been shown to be effective for large-scale network implementation and to provide improved data transmission reliability for both periodic and sporadic traffic.