385 resultados para TOCOPHEROL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxynitrite, a powerful mutagenic oxidant and nitrating species, is formed by the near diffusion-limited reaction of .NO and O2.- during activation of phagocytes. Chronic inflammation induced by phagocytes is a major contributor to cancer and other degenerative diseases. We examined how gamma-tocopherol (gammaT), the principal form of vitamin E in the United States diet, and alpha-tocopherol (alphaT), the major form in supplements, protect against peroxynitrite-induced lipid oxidation. Lipid hydroperoxide formation in liposomes (but not isolated low-density lipoprotein) exposed to peroxynitrite or the .NO and O2.- generator SIN-1 (3-morpholinosydnonimine) was inhibited more effectively by gammaT than alphaT. More importantly, nitration of gammaT at the nucleophilic 5-position, which proceeded in both liposomes and human low density lipoprotein at yields of approximately 50% and approximately 75%, respectively, was not affected by the presence of alphaT. These results suggest that despite alphaT's action as an antioxidant gammaT is required to effectively remove the peroxynitrite-derived nitrating species. We postulate that gammaT acts in vivo as a trap for membrane-soluble electrophilic nitrogen oxides and other electrophilic mutagens, forming stable carbon-centered adducts through the nucleophilic 5-position, which is blocked in alphaT. Because large doses of dietary alphaT displace gammaT in plasma and other tissues, the current wisdom of vitamin E supplementation with primarily alphaT should be reconsidered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During sepsis, a severe systemic disorder, micronutrients often are decreased. Apoptosis is regarded as an important mechanism in the development of often significant immunosuppression in the course of the disease. This study aimed to investigate alpha-tocopherol and selenium in reference to apoptosis in patients with sepsis. 16 patients were enrolled as soon as they fulfilled the criteria of severe sepsis. 10 intensive care patients without sepsis and 11 healthy volunteers served as controls. alpha-Tocopherol, selenium and nucleosomes were measured in serum. Phosphatidylserine externalization and Bcl-2 expression were analyzed in T-cells by flow cytometry. Serum alpha-tocopherol and selenium were decreased in severe sepsis but not in non-septic critically ill patients (p < 0.05). Conversely, markers of apoptosis were increased in sepsis but not in critically ill control patients: Nucleosomes were found to be elevated 3 fold in serum (p < 0.05) and phosphatidylserine was externalized on an expanded subpopulation of T-cells (p < 0.05) while Bcl-2 was expressed at lower levels (p < 0.05). The decrease of micronutrients correlated with markers of accelerated apoptosis. Accelerated apoptosis in sepsis is associated with low alpha-tocopherol and selenium. The results support the investigation of micronutrient supplementation strategies in severe sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vitamin E compound alpha-tocopherol inhibits fibroblast growth in vitro. To evaluate its potential benefit in preventing failure of glaucoma filtration surgery, we prospectively investigated the outcome of filtering surgery with postoperative dietary alpha-tocopherol supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate γ-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-mediated phagocytosis and expression of cell surface molecules associated with innate and adaptive immunity on sputum-derived macrophages. Cells from nonsmoking healthy (n = 6) and mild house dust mite-sensitive allergic asthmatics (n = 6) were treated ex vivo with GT (300 µM) or saline (control). Phagocytosis of opsonized zymosan A bioparticles (Saccharomyces cerevisiae) and expression of surface molecules associated with innate and adaptive immunity were assessed using flow cytometry. GT caused significantly decreased (p < 0.05) internalization of attached zymosan bioparticles and decreased (p < 0.05) macrophage expression of CD206, CD36 and CD86 in allergic asthmatics but not in controls. Overall, GT caused downregulation of both innate and adaptive immune response elements, and atopic status appears to be an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pregnane X receptor (PXR) has been postulated to play a role in the metabolism of α-tocopherol owing to the up-regulation of hepatic cytochrome P450 (P450) 3A in human cell lines and murine models after α-tocopherol treatment. However, in vivo studies confirming the role of PXR in α-tocopherol metabolism in humans presents significant difficulties and has not been performed. PXR-humanized (hPXR), wild-type, and Pxr-null mouse models were used to determine whether α-tocopherol metabolism is influenced by species-specific differences in PXR function in vivo. No significant difference in the concentration of the major α-tocopherol metabolites was observed among the hPXR, wild-type, and Pxr-null mice through mass spectrometry-based metabolomics. Gene expression analysis revealed significantly increased expression of Cyp3a11 as well as several other P450s only in wild-type mice, suggesting species-specificity for α-tocopherol activation of PXR. Luciferase reporter assay confirmed activation of mouse PXR by α-tocopherol. Analysis of the Cyp2c family of genes revealed increased expression of Cyp2c29, Cyp2c37, and Cyp2c55 in wild-type, hPXR, and Pxr-null mice, which suggests PXR-independent induction of Cyp2c gene expression. This study revealed that α-tocopherol is a partial agonist of PXR and that PXR is necessary for Cyp3a induction by α-tocopherol. The implications of a novel role for α-tocopherol in Cyp2c gene regulation are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamins A and E content of inner organs, among these the kidneys, are increasingly being used as an indicator of adverse effects caused to the organism by e.g. environmental contaminants. In general, only a renal sub sample is used for analyses, and it is thus essential to know which part of the organ to sample in order to get a representative value for this important biomarker. The aim here was to assess the distribution of vitamins A (retinol) and E (alpha-tocopherol) within the polar bear multireniculate kidney (i.e. polar vs. medial position) and also within the cortex vs. medulla of each separate renculi. The results showed no significant difference between the medial and polar renculi with regards to either retinol (p = 0.44) or alpha-tocopherol (p = 0.75). There were, however, significant differences between cortex and medulla for both vitamins (retinol, p = 0.0003; alpha-tocopherol, p<0.0001). The kidney cortex contained higher values of both vitamins than the medulla; on average 29% more retinol and 57% more alpha-tocopherol. Mean concentrations in the medulla was 2.7 mg/kg for retinol and 116 mg/kg for alpha-tocopherol, and in the cortex 3.5 mg/kg for retinol and 182 mg/kg for alpha-tocopherol. These results clearly indicate that one should take precautions when analyzing retinol and alpha-tocopherol in polar bear kidneys. Prior to analysis, the renculi should be separated into medulla and cortex. The results indicated no significant differences between renculi from different parts of the kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin E (α-tocopherol) is a fat-soluble antioxidant that is transported by plasma lipoproteins in the body. α-Tocopherol taken up by the liver with lipoprotein is thought to be resecreted into the plasma in very low density lipoprotein (VLDL). α-Tocopherol transfer protein (αTTP), which was recently identified as a product of the causative gene for familial isolated vitamin E deficiency, is a cytosolic liver protein and plays an important role in the efficient recycling of plasma vitamin E. To throw light on the mechanism of αTTP-mediated α-tocopherol transfer in the liver cell, we devised an assay system using the hepatoma cell line McARH7777. Using this system, we found that the secretion of α-tocopherol was more efficient in cells expressing αTTP than in matched cells lacking αTTP. Brefeldin A, which effectively inhibits VLDL secretion by disrupting the Golgi apparatus, had no effect on α-tocopherol secretion, indicating that αTTP-mediated α-tocopherol secretion is not coupled to VLDL secretion. Among other agents tested, only 25-hydroxycholesterol, a modulator of cholesterol metabolism, inhibited α-tocopherol secretion. This inhibition is most likely mediated by oxysterol-binding protein. These results suggest that αTTP present in the liver cytosol functions to stimulate secretion of cellular α-tocopherol into the extracellular medium and that the reaction utilizes a novel non-Golgi-mediated pathway that may be linked to cellular cholesterol metabolism and/or transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

d-alpha-Tocopherol, but not d-beta-tocopherol, negatively regulates proliferation of vascular smooth muscle cells at physiological concentrations. d-alpha-Tocopherol inhibits protein kinase C (PKC) activity, whereas d-beta-tocopherol is ineffective. Furthermore d-beta-tocopherol prevents the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol. The negative regulation by d-alpha-tocopherol of PKC activity appears to be the cause and not the effect of smooth muscle cell growth inhibition. d-alpha-Tocopherol does not act by binding to PKC directly but presumably by preventing PKC activation. It is concluded that, in vascular smooth muscle cells, d-alpha-tocopherol acts specifically through a nonantioxidant mechanism and exerts a negative control on a signal transduction pathway regulating cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of dietary antioxidant supplementation with alpha-tocopherol and alpha-lipoic acid on cyclosporine A (cyclosporine)-induced alterations to erythrocyte and plasma redox balance. Rats were randomly assigned to either control, antioxidant (alpha-tocopherol 1000 IU/kg diet and alpha-lipoic acid 1.6 g/kg diet), cyclosporine (25 mg/kg/day), or cyclosporine + antioxidant treatments. Cyclosporine was administered for 7 days after an 8 week feeding period. Plasma was analysed for alpha-tocopherol, total antioxidant capacity, malondialdehyde, and creatinine. Erythrocytes were analysed for glutathione, methaemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Cyclosporine administration caused a significant decrease in superoxide dismutase activity (P < 0.05 control versus cyclosporine) and this was improved by antioxidant supplementation (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P < 0.05 control versus cyclosporine + antioxidant). Animals receiving cyclosporine and antioxidants showed significantly increased (P < 0.05) catalase activity compared to both groups not receiving cyclosporine. Cyclosporine administration induced significant increases in plasma malondialdehyde and creatinine concentration (P < 0.05 control versus cyclosporine). Antioxidant supplementation prevented the cyclosporine induced increase in plasma creatinine (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P > 0.05 control versus cyclosporine + antioxidant), however, supplementation did not alter the cyclosporine induced increase in plasma malondialdehyde concentration (P > 0.05 cyclosporine versus cyclosporine + antioxidant). Antioxidant supplementation resulted in significant increases (P < 0.05) in plasma and erythrocyte alpha-tocopherol in both of the supplemented groups compared to non-supplemented groups. In conclusion, dietary supplementation with alpha-tocopherol and alpha-lipoic acid enhanced the erythrocyte antioxidant defence and reduced nephrotoxicity in cyclosporine treated animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.