472 resultados para Synapses GABAergiques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMDA receptors (NMDAr) are known to undergo recycling and lateral diffusion in postsynaptic spines and dendrites. However, NMDAr are also present as autoreceptors on glutamate terminals, where they act to facilitate glutamate release, but it is not known whether these receptors are also mobile. We have used functional pharmacological approaches to examine whether NMDA receptors at excitatory synapses in the rat entorhinal cortex are mobile at either postsynaptic sites or in presynaptic terminals. When NMDAr-mediated evoked EPSCs (eEPSCs) were blocked by MK-801, they showed no evidence of recovery when the irreversible blocker was removed, suggesting that postsynaptic NMDAr were relatively stably anchored at these synapses. However, using frequency-dependent facilitation of AMPA receptor (AMPAr)-mediated eEPSCs as a reporter of presynaptic NMDAr activity, we found that when facilitation was blocked with MK-801 there was a rapid (similar to 30-40 min) anomalous recovery upon removal of the antagonist. This was not observed when global NMDAr blockade was induced by combined perfusion with MK-801 and NMDA. Anomalous recovery was accompanied by an increase in frequency of spontaneous EPSCs, and a variable increase in frequency-facilitation. Following recovery from blockade of presynaptic NMDAr with a competitive antagonist, frequency-dependent facilitation of AMPAr-mediated eEPSCs was also transiently enhanced. Finally, an increase in frequency of miniature EPSCs induced by NMDA was succeeded by a persistent decrease. Our data provide the first evidence for mobility of NMDAr in the presynaptic terminals, and may point to a role of this process in activity-dependent control of glutamate release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain. © 2007 IBRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes modulate synaptic strength. This effect occurs, reports a new paper, because ATP-dependent vesicular release of astrocytic glutamate acts on presynaptic neuronal NMDA receptors to increase synaptic efficacy. © 2007 Nature Publishing Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapses onto dendritic spines in the lateral amygdala formed by afferents from the auditory thalamus represent a site of plasticity in Pavlovian fear conditioning. Previous work has demonstrated that thalamic afferents synapse onto LA spines expressing glutamate receptor (GluR) subunits, but the GluR subunit distribution at the synapse and within the cytoplasm has not been characterized. Therefore, we performed a quantitative analysis for α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluR2 and GluR3 and N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B by combining anterograde labeling of thalamo-amygdaloid afferents with postembedding immunoelectron microscopy for the GluRs in adult rats. A high percentage of thalamo- amygdaloid spines was immunoreactive for GluR2 (80%), GluR3 (83%), and NR1 (83%), while a smaller proportion of spines expressed NR2B (59%). To compare across the various subunits, the cytoplasmic to synaptic ratios of GluRs were measured within thalamo-amygdaloid spines. Analyses revealed that the cytoplasmic pool of GluR2 receptors was twice as large compared to the GluR3, NR1, and NR2B subunits. Our data also show that in the adult brain, the NR2B subunit is expressed in the majority of in thalamo-amygdaloid spines and that within these spines, the various GluRs are differentially distributed between synaptic and non-synaptic sites. The prevalence of the NR2B subunit in thalamo-amygdaloid spines provides morphological evidence supporting its role in the fear conditioning circuit while the differential distribution of the GluR subtypes may reflect distinct roles for their involvement in this circuitry and synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the ‘anti-reward’ effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). One proposed form of cellular plasticity involves structural changes in the number and morphology of dendritic spines...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons of the lateral nucleus of the amygdala (LA). While the LA has been implicated as a key brain structure for fear learning, how its network of cellular components performs these operations is not yet known...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Hebbian postulate, transiently reverberating cellular ensembles can sustain activity to facilitate temporal coincidence detection. Auditory fear conditioning is believed to be formed in the lateral amygdala (LA), by way of plasticity at auditory input synapses on principal neurons. To evaluate the contribution of LA cellular ensembles in the formation of conditioned fear memories, we investigated the LA micro-circuitry by electrophysiological and anatomical approaches. Polysynaptic field potentials evoked in the LA by stimulation of auditory thalamus(MGm/PIN) or auditory cortical (TE3) afferents were analyzed in vitro and in vivo. In vivo, two potentials were identified following stimulation of either pathway. In vitro, these multiple potentials were revealed by adding 75uM Picrotoxin or 30uM Bicuculine, with the first potential peaking at 15-20 ms, followed by two additional potentials at 20 – 25 and 30 – 35 ms, respectively. These data show single stimulation events can result in multiple synchronized excitatory events within the lateral amygdala. In order to determine underlying mechanisms of auditory signal propagation, LA principal neuron axon collateral trajectory patterns and morphology were analyzed. Neurons were found to have local axon collaterals that are topographically organized. Each axon collateral within the LA totaled 14.1 ± 2.73mm, had 29.8 ± 9.1 branch points and 1870.8 ± 1035 boutons (n=9). Electrophysiological and anatomical data show that a network of extensive axon collaterals within the LA may facilitate preservation of auditory afferent signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). In order to begin to understand how fear memories are stored and processed by synaptic changes in the LA, we have quantified both the entire neural number and the sub-cellular structure of LA principal neurons.We first used stereological cell counting methods on Gimsa or GABA immunostained rat brain. We identified 60,322+/-1408 neurons in the LA unilaterally (n=7). Of these 16,917+/-471 were GABA positive. The intercalated nuclei were excluded from the counts and thus GABA cells are believed to represent GABAergic interneurons. The sub-nuclei of the LA were also independently counted. We then quantified the morphometric properties of in vitro electrophysiologically identified principal neurons of the LA, corrected for shrinkage in xyz planes. The total dendritic length was 9.97+/-2.57mm, with 21+/-4 nodes (n=6). Dendritic spine density was 0.19+/-0.03 spines/um (n=6). Intra-LA axon collaterals had a bouton density of 0.1+/-0.02 boutons/um (n=5). These data begin to reveal the finite cellular and sub-cellular processing capacity of the lateral amygdala, and should facilitate efforts to understand mechanisms of plasticity in LA.