Impaired GABA Plasticity at ovBNST Synapses Predicts Compulsive Drinking in Schedule-Induced Polydipsia
Contribuinte(s) |
Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
---|---|
Data(s) |
29/09/2016
01/10/2016
01/10/2016
01/10/2016
|
Resumo |
Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm. Thesis (Master, Biomedical & Molecular Sciences) -- Queen's University, 2016-09-29 15:59:46.333 |
Identificador | |
Idioma(s) |
en en |
Relação |
Canadian theses |
Direitos |
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada ProQuest PhD and Master's Theses International Dissemination Agreement Intellectual Property Guidelines at Queen's University Copying and Preserving Your Thesis Creative Commons - Attribution - CC BY This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Palavras-Chave | #Plasticity #Schedule-Induced Polydipsia #Compulsivity #GABA |
Tipo |
Thesis |