983 resultados para Sustainable transport
Resumo:
Light Transport Systems (LTS) (e.g lightpipes, fibre optics) can illuminate core areas within buildings with great potential for energy savings. However, they do not provide a clear connection to the outside like windows do, and their effects on people’s physiological and psychological health are not well understood. Furthermore, how people perceive LTS affects users’ acceptance of the device and its performance. The purpose of this research is to understand how occupants perceive and experience spaces illuminated by LTS. Two case studies of commercial buildings with LTS, located in Brisbane, Australia are assessed by qualitative (focus group interviews) and quantitative (measurement of daylight illuminances and luminance) methods. The data from interviews with occupants provide useful insight into the aspects of LTS design that are most relevant to positive perception of the luminous environment. Luminance measurements of the occupied spaces support the perception of the LTS reported by occupants: designs that create high contrast luminous environments are more likely to be perceived negatively.
Resumo:
The concept of ‘sustainability’ has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the modern urban lifestyle. Climate change has emerged to be one of the biggest challenges faced by our planet today, threatening both built and natural systems with long term consequences which may be irreversible. While there is a vast literature in the market on sustainable cities and urban development, there is currently none that bring together the vital issues of urban and regional development, and the planning, management and implementation of sustainable infrastructure. Large scale infrastructure plays an important part in modern society by not only promoting economic growth, but also by acting as a key indicator for it. More importantly, it supplies municipal/local amenity and services: water, electricity, social and communication facilities, waste removal, transport of people and goods, as well as numerous other services. For the most part, infrastructure has been built by teams lead by engineers who are more concerned about functionality than the concept of sustainability. However, it has been widely stated that current practices and lifestyle cannot continue if we are to leave a healthy living planet to not only the next generation, but also to the generations beyond. Therefore, in order to be sustainable, there are drastic measures that need to be taken. Current single purpose and design infrastructures that are open looped are not sustainable; they are too resource intensive, consume too much energy and support the consumption of natural resources at a rate that will exhaust their supply. Because of this, it is vital that modern society, policy-makers, developers, engineers and planners become pioneers in introducing and incorporating sustainable features into urban and regional infrastructure.
Resumo:
Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.
Resumo:
In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
Infrastructure forms a vital component in supporting today’s way of life and has a significant role or impact on economic, environmental and social outcomes of the region around it. The design, construction and operation of such assets are a multi-billion dollar industry in Australia alone. Another issue that will play a major role in our way life is that of climate change and the greater concept of sustainability. With limited resources and a changing natural world it is necessary for infrastructure to be developed and maintained in a manner that is sustainable. In order to achieve infrastructure sustainability in operations it is necessary for there to be: a sustainability assessment scheme that provides a scientifically sound and realistic approach to measuring an assets level of sustainability; and, systems and tools to support the making of decisions that result in sustainable outcomes by providing feedback in a timely manner. Having these in place will then help drive the consideration of sustainability during the decision making process for infrastructure operations and maintenance. In this paper we provide two main contributions; a comparison and review of sustainability assessment schemes for infrastructure and their suitability for use in the operations phase; and, a review of decision support systems/tools in the area of infrastructure sustainability in operations. For this paper, sustainability covers not just the environment, but also finance/economic and societal/community aspects as well. This is often referred to as the Triple Bottom Line and forms one of the three dimensions of corporate sustainability [Stapledon, 2004].
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
"This multi-disciplinary book provides practical solutions for safeguarding the sustainability of the urban water environment. Firstly, the importance of the urban water environment is highlighted and the major problems urban water bodies face and strategies to safeguard the water environment are explored. Secondly, the diversity of pollutants entering the water environment through stormwater runoff are discussed and modelling approaches for factoring in climate change and future urban and transport scenarios are proposed. Thirdly, by linking the concepts of sustainable urban ecosystems and sustainable urban and transport development, capabilities of two urban sustainability assessment models are demonstrated."--publisher website
Resumo:
The purpose of this research is to empirically test the prevailing view that transit oriented development enhances the use of more sustainable modes of transport using Brisbane, Australia as a case. Transit oriented development has been adopted as a new policy tool to reduce car-based travel worldwide. Despite being a billion dollar investment, the impacts of transit oriented development on promoting sustainable travel behavior is not conclusive. The research uses a case-control approach to empirically investigate this relationship based on travel behavior data collected from 88 individuals living in two contrasting neighborhoods in Brisbane: Kelvin Grove Urban Village – a transit oriented development, and Annerley – a traditional suburb (non-transit oriented development). A comparative investigation of travel behavior was subsequently conducted using distance travelled by modes and purposes between the neighborhoods. Results show that the availability of opportunity and services located within the transit oriented development reduces the car use by 5% and increases the use of active transport by 4%. The findings in this research support the implementation of TOD policies in Brisbane.
Resumo:
Integration of land use and transport decisions to achieve sustainable travel behavior has been considered an integral element for sustainable urban development. However, before the popularity of urban sustainability concept, land use and transport interaction had been scrutinized as strictly separate entities in the urban planning and development domains. Fortunately today the concept of sustainability has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the rapid urbanization and modern urban lifestyles. The paper therefore aims to highlight the importance of the interplay between transport, land use and the environment. This review paper provides evidence from the literature including the Transport, Land Use and the Environment Special Issue contributions and global best practice cases to showcase new empirical approaches and investigations from different parts of the world that contribute to the wealth of knowledge in exploring the interplay between transport, land use and the environment thoroughly.
Resumo:
The type of contract model may have a significant influence on achieving project objectives, including environmental and climate change goals. This research investigates non-standard contract models impacting greenhouse gas emissions (GHG) in transport infrastructure construction in Australia. The research is based on the analysis of two case studies: an Early Contractor Involvement (ECI) contract and a Design and Construct (D&C) contract with GHG reduction requirements embedded in the contractor selection. Main findings support the use of ECIs for better integrating decisions made during the planning phase with the construction activities, and improve environmental outcomes while achieving financial and time savings. Key words: greenhouse gases reduction; road construction; contracting; ECI; D&C