919 resultados para Surveys - stars: low-mass
Resumo:
This Thesis is devoted to the study of the optical companions of Millisecond Pulsars in Galactic Globular Clusters (GCs) as a part of a large project started at the Department of Astronomy of the Bologna University, in collaboration with other institutions (Astronomical Observatory of Cagliari and Bologna, University of Virginia), specifically dedicated to the study of the environmental effects on passive stellar evolution in galactic GCs. Globular Clusters are very efficient “Kilns” for generating exotic object, such as Millisecond Pulsars (MSP), low mass X-ray binaries(LMXB) or Blue Straggler Stars (BSS). In particular MSPs are formed in binary systems containing a Neutron Star which is spun up through mass accretion from the evolving companion (e.g. Bhattacharia & van den Heuvel 1991). The final stage of this recycling process is either the core of a peeled star (generally an Helium white dwarf) or a very light almos exhausted star, orbiting a very fast rotating Neutron Star (a MSP). Despite the large difference in total mass between the disk of the Galaxy and the Galactic GC system (up a factor 103), the percentage of fast rotating pulsar in binary systems found in the latter is very higher. MSPs in GCs show spin periods in the range 1.3 ÷ 30ms, slowdown rates ˙P 1019 s/s and a lower magnetic field, respect to ”normal” radio pulsars, B 108 gauss . The high probability of disruption of a binary systems after a supernova explosion, explain why we expect only a low percentage of recycled millisecond pulsars respect to the whole pulsar population. In fact only the 10% of the known 1800 radio pulsars are radio MSPs. Is not surprising, that MSP are overabundant in GCs respect to Galactic field, since in the Galactic Disk, MSPs can only form through the evolution of primordial binaries, and only if the binary survives to the supernova explosion which lead to the neutron star formation. On the other hand, the extremely high stellar density in the core of GCs, relative to most of the rest of the Galaxy, favors the formation of several different binary systems, suitable for the recycling of NSs (Davies at al. 1998). In this thesis we will present the properties two millisecond pulsars companions discovered in two globular clusters, the Helium white dwarf orbiting the MSP PSR 1911-5958A in NGC 6752 and the second case of a tidally deformed star orbiting an eclipsing millisecond pulsar, PSR J1701-3006B in NGC6266
Resumo:
In this thesis two related arguments are investigated: - The first stages of the process of massive star formation, investigating the physical conditions and -properties of massive clumps in different evolutionary stages, and their CO depletion; - The influence that high-mass stars have on the nearby material and on the activity of star formation. I characterise the gas and dust temperature, mass and density of a sample of massive clumps, and analyse the variation of these properties from quiescent clumps, without any sign of active star formation, to clumps likely hosting a zero-age main sequence star. I briefly discuss CO depletion and recent observations of several molecular species, tracers of Hot Cores and/or shocked gas, of a subsample of these clumps. The issue of CO depletion is addressed in more detail in a larger sample consisting of the brightest sources in the ATLASGAL survey: using a radiative tranfer code I investigate how the depletion changes from dark clouds to more evolved objects, and compare its evolution to what happens in the low-mass regime. Finally, I derive the physical properties of the molecular gas in the photon-dominated region adjacent to the HII region G353.2+0.9 in the vicinity of Pismis 24, a young, massive cluster, containing some of the most massive and hottest stars known in our Galaxy. I derive the IMF of the cluster and study the star formation activity in its surroundings. Much of the data analysis is done with a Bayesian approach. Therefore, a separate chapter is dedicated to the concepts of Bayesian statistics.
Resumo:
Nearly 500 brown dwarfs have been discovered in recent years. The majority of these brown dwarfs exist in the solar neighborhood, yet determining their fundamental properties (mass, age, temperature & metallicity) has proved to be quite difficult, with current estimates relying heavily on theoretical models. Binary brown dwarfs provide a unique opportunity to empirically determine fundamental properties, which can then be used to test model predictions. In addition, the observed binary fractions, separations, mass ratios, & orbital eccentricities can provide insight into the formation mechanism of these low-mass objects. I will review the results of various brown dwarf multiplicity studies, and will discuss what we have learned about the formation and evolution of brown dwarfs by examining their binary properties as a function of age and mass.
Resumo:
PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
Resumo:
This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.
Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93
Resumo:
Aims. We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. Methods. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. Results. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. Conclusions. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.
Resumo:
Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.
Resumo:
We report on an ~63 ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long-duration gamma-ray burst (GRB 070610). The outburst of this source was characterized by unique optical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed ~2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swift J195509.6+261406, which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source is a binary system hosting a black hole or a neutron star with a low-mass companion star (<0.12 M ☉) and with an orbital period smaller than a few hours.
Resumo:
Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50−100 K for Teff, 0.10−0.25 dex for log g and 0.05−0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
Resumo:
Star formation occurs when the gas (mostly atomic hydrogen; H I) in a galaxy becomes disturbed, forming regions of high density gas, which then collapses to form stars. In dwarf galaxies it is still uncertain which processes contribute to star formation and how much they contribute to star formation. Blue compact dwarf (BCD) galaxies are low mass, low shear, gas rich galaxies that have high star formation rates when compared to other dwarf galaxies. What triggers the dense burst of star formation in BCDs but not other dwarfs is not well understood. It is often suggested that BCDs may have their starburst triggered by gravitational interactions with other galaxies, dwarf-dwarf galaxy mergers, or consumption of intergalactic gas. However, there are BCDs that appear isolated with respect to other galaxies, making an external disturbance unlikely.^ Here, I study six apparently isolated BCDs from the LITTLE THINGS sample in an attempt to understand what has triggered their burst of star formation. LITTLE THINGS is an H I survey of 41 dwarf galaxies. Each galaxy has high angular and velocity resolution H I data from the Very Large Array (VLA) telescope and ancillary stellar data. I use these data to study the detailed morphology and kinematics of each galaxy, looking for signatures of starburst triggers. In addition to the VLA data, I have collected Green Bank Telescope data for the six BCDs. These high sensitivity, low resolution data are used to search the surrounding area of each galaxy for extended emission and possible nearby companion galaxies.^ The VLA data show evidence that each BCD has likely experienced some form of external disturbance despite their apparent isolation. These external disturbances potentially seen in the sample include: ongoing/advanced dwarf-dwarf mergers, an interaction with an unknown external object, and external gas consumption. The GBT data result in no nearby, separate H I companions at the sensitivity of the data. These data therefore suggest that even though these BCDs appear isolated, they have not been evolving in isolation. It is possible that these external disturbances may have triggered the starbursts that defines them as BCDs.^
Resumo:
In this work, desorption/ionization mass spectrometry was employed for the analysis of sugars and small platform chemicals that are common intermediates in biomass transformation reactions. Specifically, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometric techniques were employed as alternatives to traditional chromatographic methods. Ionic liquid matrices (ILMs) were designed based on traditional solid MALDI matrices (2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA)) and 1,3-dialkylimidazolium ionic liquids ([BMIM]Cl, [EMIM]Cl, and [EMIM]OAc) that have been employed as reaction media for biomass transformation reactions such as the conversion of carbohydrates to valuable platform chemicals. Although two new ILMs were synthesized ([EMIM][DHB] and [EMIM][CHCA] from [EMIM]OAc), chloride-containing ILs did not react with matrices and resulted in mixtures of IL and matrix in solution. Compared to the parent solid matrices, much less matrix interference was observed in the low mass region of the mass spectrum (< 500 Da) using each of the IL-matrices. Furthermore, the formation of a true ILM (i.e. a new ion pair) does not appear to be necessary for analyte ionization. MALDI sample preparation techniques were optimized based on the compatibility with analyte, IL and matrix. ILMs and IL-matrix mixtures of DHB allowed for qualitative analysis of glucose, fructose, sucrose and N-acetyl-D-glucosamine. Analogous CHCA-containing ILMs did not result in appreciable analyte signals under similar conditions. Small platform compounds such as 5-hydroxymethylfurfural (HMF) and levulinic acid were not detected by direct analysis using MALDI-MS. Furthermore, sugar analyte signals were only detected at relatively high matrix:IL:analyte ratios (1:1:1) due to significant matrix and analyte suppression by the IL ions. Therefore, chemical modification of analytes with glycidyltrimethylammonium chloride (GTMA) was employed to extend this method to quantitative applications. Derivatization was accomplished in aqueous IL solutions with fair reaction efficiencies (36.9 – 48.4 % glucose conversion). Calibration curves of derivatized glucose-GTMA yielded good linearity in all solvent systems tested, with decreased % RSDs of analyte ion signals in IL solutions as compared to purely aqueous systems (1.2 – 7.2 % and 4.2 – 8.7 %, respectively). Derivatization resulted in a substantial increase in sensitivity for MALDI-MS analyses: glucose was reliably detected at IL:analyte ratios of 100:1 (as compared to 1:1 prior to derivatization). Screening of all test analytes resulted in appreciable analyte signals in MALDI-MS spectra, including both HMF and levulinic acid. Using appropriate internal standards, calibration curves were constructed and this method was employed for monitoring a model dehydration reaction of fructose to HMF in [BMIM]Cl. Calibration curves showed wide dynamic ranges (LOD – 100 ng fructose/μg [BMIM]Cl, LOD – 75 ng HMF/μg [BMIM]Cl) with correlation coefficients of 0.9973 (fructose) and 0.9931 (HMF). LODs were estimated from the calibration data to be 7.2 ng fructose/μg [BMIM]Cl and 7.5 ng HMF/μg [BMIM]Cl, however relatively high S/N ratios at these concentrations indicate that these values are likely overestimated. Application of this method allowed for the rapid acquisition of quantitative data without the need for prior separation of analyte and IL. Finally, small molecule platform chemicals HMF and levulinic acid were qualitatively analyzed by DESI-MS. Both HMF and levulinic acid were easily ionized and the corresponding molecular ions were easily detected in the presence of 10 – 100 times IL, without the need for chemical modification prior to analysis. DESI-MS analysis of ILs in positive and negative ion modes resulted in few ions in the low mass region, showing great potential for the analysis of small molecules in IL media.
Resumo:
Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.
Resumo:
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the ‘perturbations-aided neutrino-driven mechanism,’ whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
Resumo:
Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv´en ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ( 10−7) that they constitute plasmas. We outline the criteria required for Alfv´en ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfv´en ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10−6–1 can be obtained as a result of Alfv´en ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfv´en ionization may also be applicable to other astrophysical environments such as protoplanetary disks.
Resumo:
The velocity function (VF) is a fundamental observable statistic of the galaxy population that is similar to the luminosity function in importance, but much more difficult to measure. In this work we present the first directly measured circular VF that is representative between 60 < v_circ < 320 km s^-1 for galaxies of all morphological types at a given rotation velocity. For the low-mass galaxy population (60 < v_circ < 170 km s^-1), we use the HI Parkes All Sky Survey VF. For the massive galaxy population (170 < v_circ < 320 km s^-1), we use stellar circular velocities from the Calar Alto Legacy Integral Field Area Survey (CALIFA). In earlier work we obtained the measurements of circular velocity at the 80% light radius for 226 galaxies and demonstrated that the CALIFA sample can produce volume-corrected galaxy distribution functions. The CALIFA VF includes homogeneous velocity measurements of both late and early-type rotation-supported galaxies and has the crucial advantage of not missing gas-poor massive ellipticals that HI surveys are blind to. We show that both VFs can be combined in a seamless manner, as their ranges of validity overlap. The resulting observed VF is compared to VFs derived from cosmological simulations of the z = 0 galaxy population. We find that dark-matter-only simulations show a strong mismatch with the observed VF. Hydrodynamic simulations fare better, but still do not fully reproduce observations.