961 resultados para Structural-Properties
Structural and optical properties of Er3+ doped SiO2-Al2O3-GeO2 compounds prepared by a simple route
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.
Resumo:
A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.
Resumo:
Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have examined the basis for immunodominant or public TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Resumo:
A dc magnetron sputtering-based method to grow high-quality Cu2ZnSnS4 (CZTS) thin films, to be used as an absorber layer in solar cells, is being developed. This method combines dc sputtering of metallic precursors with sulfurization in S vapour and with post-growth KCN treatment for removal of possible undesired Cu2−xS phases. In this work, we report the results of a study of the effects of changing the precursors’ deposition order on the final CZTS films’ morphological and structural properties. The effect of KCN treatment on the optical properties was also analysed through diffuse reflectance measurements. Morphological, compositional and structural analyses of the various stages of the growth have been performed using stylus profilometry, SEM/EDS analysis, XRD and Raman Spectroscopy. Diffuse reflectance studies have been done in order to estimate the band gap energy of the CZTS films. We tested two different deposition orders for the copper precursor, namely Mo/Zn/Cu/Sn and Mo/Zn/Sn/Cu. The stylus profilometry analysis shows high average surface roughness in the ranges 300–550 nm and 230–250 nm before and after KCN treatment, respectively. All XRD spectra show preferential growth orientation along (1 1 2) at 28.45◦. Raman spectroscopy shows main peaks at 338 cm−1 and 287 cm−1 which are attributed to Cu2ZnSnS4. These measurements also confirm the effectiveness of KCN treatment in removing Cu2−xS phases. From the analysis of the diffuse reflectance measurements the band gap energy for both precursors’ sequences is estimated to be close to 1.43 eV. The KCN-treated films show a better defined absorption edge; however, the band gap values are not significantly affected. Hot point probe measurements confirmed that CZTS had p-type semiconductor behaviour and C–V analysis was used to estimate the majority carrier density giving a value of 3.3 × 1018 cm−3.
Resumo:
The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.
Resumo:
The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects of annealing conditions on the morphological and structural properties of the films were investigated. Scanning electron microscopy and energy dispersive spectroscopy were employed to investigate the morphology and composition of the films. Structural analyses were done using X-ray diffraction (XRD) and Raman spectroscopy. Structural analyses revealed the formation of CZTSSe. This study shows that regardless of the selenization method a temperature above 450 °C is required for conversion of precursors to a compact CZTSSe layer. XRD and Raman analysis suggests that the films selenized in the tubular furnace are selenium rich whereas the samples selenized in the rapid thermal processor have higher sulfur content.
Resumo:
Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.
Resumo:
tThis work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied opticalresponses prompted by the variations in their compositional and structural properties. The films wereprepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2+ O2(17:3).The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gasflows to red-brownish for intermediate gas flows. Associated to this colour change there was a significantdecrease of brightness. With further increase of the reactive gas flow, the colour of the samples changedfrom red-brownish to dark blue or even to interference colourations. The variations in composition dis-closed the existence of four different zones, which were found to be closely related with the variationsin the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirco-nium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallizedover-stoichiometric nitride phase, which may be similar to that of Zr3N4with some probable oxygeninclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For highreactive gas flows, the films developed an oxynitride-type phase, similar to that of -Zr2ON2with someoxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2monoclinic type structurewithin the zone where films were prepared with relatively high reactive gas flows. The analysis carriedout by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of thed-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV.The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness anda colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to thesechanges, there was also a shift of the reflectivity minimum to lower energies, with the increase of thenon-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films)revealed a typical semi-transparent-optical behaviour showing interference-like colourations only dueto the complete depopulation of the d band at the Fermi level. The samples lying in these zones presentedalso an increase of the optical bandgap from 2 to 3.6 eV.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.
Resumo:
The activation of the specific immune response against tumor cells is based on the recognition by the CD8+ Cytotoxic Τ Lymphocytes (CTL), of antigenic peptides (p) presented at the surface of the cell by the class I major histocompatibility complex (MHC). The ability of the so-called T-Cell Receptors (TCR) to discriminate between self and non-self peptides constitutes the most important specific control mechanism against infected cells. The TCR/pMHC interaction has been the subject of much attention in cancer therapy since the design of the adoptive transfer approach, in which Τ lymphocytes presenting an interesting response against tumor cells are extracted from the patient, expanded in vitro, and reinfused after immunodepletion, possibly leading to cancer regression. In the last decade, major progress has been achieved by the introduction of engineered lypmhocytes. In the meantime, the understanding of the molecular aspects of the TCRpMHC interaction has become essential to guide in vitro and in vivo studies. In 1996, the determination of the first structure of a TCRpMHC complex by X-ray crystallography revealed the molecular basis of the interaction. Since then, molecular modeling techniques have taken advantage of crystal structures to study the conformational space of the complex, and understand the specificity of the recognition of the pMHC by the TCR. In the meantime, experimental techniques used to determine the sequences of TCR that bind to a pMHC complex have been used intensively, leading to the collection of large repertoires of TCR sequences that are specific for a given pMHC. There is a growing need for computational approaches capable of predicting the molecular interactions that occur upon TCR/pMHC binding without relying on the time consuming resolution of a crystal structure. This work presents new approaches to analyze the molecular principles that govern the recognition of the pMHC by the TCR and the subsequent activation of the T-cell. We first introduce TCRep 3D, a new method to model and study the structural properties of TCR repertoires, based on homology and ab initio modeling. We discuss the methodology in details, and demonstrate that it outperforms state of the art modeling methods in predicting relevant TCR conformations. Two successful applications of TCRep 3D that supported experimental studies on TCR repertoires are presented. Second, we present a rigid body study of TCRpMHC complexes that gives a fair insight on the TCR approach towards pMHC. We show that the binding mode of the TCR is correctly described by long-distance interactions. Finally, the last section is dedicated to a detailed analysis of an experimental hydrogen exchange study, which suggests that some regions of the constant domain of the TCR are subject to conformational changes upon binding to the pMHC. We propose a hypothesis of the structural signaling of TCR molecules leading to the activation of the T-cell. It is based on the analysis of correlated motions in the TCRpMHC structure. - L'activation de la réponse immunitaire spécifique dirigée contre les cellules tumorales est basée sur la reconnaissance par les Lymphocytes Τ Cytotoxiques (CTL), d'un peptide antigénique (p) présenté à la suface de la cellule par le complexe majeur d'histocompatibilité de classe I (MHC). La capacité des récepteurs des lymphocytes (TCR) à distinguer les peptides endogènes des peptides étrangers constitue le mécanisme de contrôle le plus important dirigé contre les cellules infectées. L'interaction entre le TCR et le pMHC est le sujet de beaucoup d'attention dans la thérapie du cancer, depuis la conception de la méthode de transfer adoptif: les lymphocytes capables d'une réponse importante contre les cellules tumorales sont extraits du patient, amplifiés in vitro, et réintroduits après immunosuppression. Il peut en résulter une régression du cancer. Ces dix dernières années, d'importants progrès ont été réalisés grâce à l'introduction de lymphocytes modifiés par génie génétique. En parallèle, la compréhension du TCRpMHC au niveau moléculaire est donc devenue essentielle pour soutenir les études in vitro et in vivo. En 1996, l'obtention de la première structure du complexe TCRpMHC à l'aide de la cristallographie par rayons X a révélé les bases moléculaires de l'interaction. Depuis lors, les techniques de modélisation moléculaire ont exploité les structures expérimentales pour comprendre la spécificité de la reconnaissance du pMHC par le TCR. Dans le même temps, de nouvelles techniques expérimentales permettant de déterminer la séquence de TCR spécifiques envers un pMHC donné, ont été largement exploitées. Ainsi, d'importants répertoires de TCR sont devenus disponibles, et il est plus que jamais nécessaire de développer des approches informatiques capables de prédire les interactions moléculaires qui ont lieu lors de la liaison du TCR au pMHC, et ce sans dépendre systématiquement de la résolution d'une structure cristalline. Ce mémoire présente une nouvelle approche pour analyser les principes moléculaires régissant la reconnaissance du pMHC par le TCR, et l'activation du lymphocyte qui en résulte. Dans un premier temps, nous présentons TCRep 3D, une nouvelle méthode basée sur les modélisations par homologie et ab initio, pour l'étude de propriétés structurales des répertoires de TCR. Le procédé est discuté en détails et comparé à des approches standard. Nous démontrons ainsi que TCRep 3D est le plus performant pour prédire des conformations pertinentes du TCR. Deux applications à des études expérimentales des répertoires TCR sont ensuite présentées. Dans la seconde partie de ce travail nous présentons une étude de complexes TCRpMHC qui donne un aperçu intéressant du mécanisme d'approche du pMHC par le TCR. Finalement, la dernière section se concentre sur l'analyse détaillée d'une étude expérimentale basée sur les échanges deuterium/hydrogène, dont les résultats révèlent que certaines régions clés du domaine constant du TCR sont sujettes à un changement conformationnel lors de la liaison au pMHC. Nous proposons une hypothèse pour la signalisation structurelle des TCR, menant à l'activation du lymphocyte. Celle-ci est basée sur l'analyse des mouvements corrélés observés dans la structure du TCRpMHC.
Resumo:
INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.