987 resultados para Statistical efficiency
Resumo:
Background The problem of silent multiple comparisons is one of the most difficult statistical problems faced by scientists. It is a particular problem for investigating a one-off cancer cluster reported to a health department because any one of hundreds, or possibly thousands, of neighbourhoods, schools, or workplaces could have reported a cluster, which could have been for any one of several types of cancer or any one of several time periods. Methods This paper contrasts the frequentist approach with a Bayesian approach for dealing with silent multiple comparisons in the context of a one-off cluster reported to a health department. Two published cluster investigations were re-analysed using the Dunn-Sidak method to adjust frequentist p-values and confidence intervals for silent multiple comparisons. Bayesian methods were based on the Gamma distribution. Results Bayesian analysis with non-informative priors produced results similar to the frequentist analysis, and suggested that both clusters represented a statistical excess. In the frequentist framework, the statistical significance of both clusters was extremely sensitive to the number of silent multiple comparisons, which can only ever be a subjective "guesstimate". The Bayesian approach is also subjective: whether there is an apparent statistical excess depends on the specified prior. Conclusion In cluster investigations, the frequentist approach is just as subjective as the Bayesian approach, but the Bayesian approach is less ambitious in that it treats the analysis as a synthesis of data and personal judgements (possibly poor ones), rather than objective reality. Bayesian analysis is (arguably) a useful tool to support complicated decision-making, because it makes the uncertainty associated with silent multiple comparisons explicit.
Resumo:
The main objective was to compare the environmental impacts of a building undergoing refurbishment both before and after the refurbishment and to assist in the design of the refurbishment with what is learned.
Resumo:
This paper describes the process adopted in developing an integrated decision support framework for planning of office building refurbishment projects, with specific emphasize on optimising rentable floor space, structural strengthening, residual life and sustainability. Expert opinion on the issues to be considered in a tool is being captured through the DELPHI process, which is currently ongoing. The methodology for development of the integrated tool will be validated through decisions taken during a case study project: refurbishment of CH1 building of Melbourne City Council, which will be followed through to completion by the research team. Current status of the CH1 planning will be presented in the context of the research project.
Resumo:
This paper will summarise the findings from a study that explored the link between dwelling design, or type, and energy efficiencies in sub-tropical climates. An increasing number of government and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes at both sub-divisional and dwelling levels. The study used AccuRate, a new thermal modelling tool developed by CSIRO that responds to the need to improve ventilation modelling. The study found that dwellings developed in conjunction with the Departments of Housing and Public Works have set the benchmark. It provides a snapshot of the energy efficiency of a range of dwelling types found in recent subdivisions. However, the trend toward increasing urban densities may reduce the likelihood that cooling breezes will be available to cool dwellings. The findings are relevant to regulators, designers and industry in all states interested in reducing the energy used to cool dwellings in summer.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
In 2004, with the increasing overloading restriction requirements of society in Anhui, a provincial comprehensive overloading transportation survey has been developed to take evaluations on overloading actuality and enforcement efficiency with the support of the World Bank. A total of six site surveys were conducted at Hefei, Fuyang, Luan, Wuhu, Huainan and Huangshan Areas with four main contents respectively: traffic volume, axle load, freight information and registration information. Via statistical analysis on the survey data, conclusions were gained that: vehicle overloading are very universal and serious problems at arterial highways in Anhui now. The traffic loads have far exceeded the designed endure capacity of highways and have caused prevalent premature pavement damage, especially for rigid pavement. The overloading trucks are unimpeded engaged in highway freight transportation actually due to the disordered overloading enforcement strategies and the deficient inspecting technologies.
Resumo:
Energy efficient lubricants are becoming increasingly popular. This is due to a global increase in environmental awareness combined with the potential of reducing operating costs. A new test method of evaluating the energy efficiency of gear oils has been described in this report. The method involves measuring the power required by an FZG test rig to run while using a particular test lubricant. For each oil that was being evaluated, the rig was run for 10 minutes at a load stage of 10. Six extreme pressure (EP) industrial gear oils of mineral base were tested. The difference in power requirements between the best and the worst performing oils was 2.77 and 3.24 kW, respectively. This equates to a 14.6% reduction in power, a significant amount if considered in relation to a high powered industrial machine. The oils of superior performance were noticed to run at reduced temperatures. They were also more expensive than the other products of lesser performance.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
It has long been recognised that government and public sector services suffer an innovation deficit compared to private or market-based services. This paper argues that this can be explained as an unintended consequence of the concerted public sector drive toward the elimination of waste through efficiency, accountability and transparency. Yet in an evolving economy this can be a false efficiency, as it also eliminates the 'good waste' that is a necessary cost of experimentation. This results in a systematic trade0off in the public sector between the static efficiency of minimizing the misuse of public resources and the dynamic efficiency of experimentation. this is inherently biased against risk and uncertainty and therein, explains why governments find service innovation so difficult. In the drive to eliminate static inefficiencies, many political systems have susequently overshot and stifled policy innovation. I propose the 'Red Queen' solution of adaptive economic policy.
Resumo:
Multicarrier code division multiple access (MC-CDMA) is a very promising candidate for the multiple access scheme in fourth generation wireless communi- cation systems. During asynchronous transmission, multiple access interference (MAI) is a major challenge for MC-CDMA systems and significantly affects their performance. The main objectives of this thesis are to analyze the MAI in asyn- chronous MC-CDMA, and to develop robust techniques to reduce the MAI effect. Focus is first on the statistical analysis of MAI in asynchronous MC-CDMA. A new statistical model of MAI is developed. In the new model, the derivation of MAI can be applied to different distributions of timing offset, and the MAI power is modelled as a Gamma distributed random variable. By applying the new statistical model of MAI, a new computer simulation model is proposed. This model is based on the modelling of a multiuser system as a single user system followed by an additive noise component representing the MAI, which enables the new simulation model to significantly reduce the computation load during computer simulations. MAI reduction using slow frequency hopping (SFH) technique is the topic of the second part of the thesis. Two subsystems are considered. The first sub- system involves subcarrier frequency hopping as a group, which is referred to as GSFH/MC-CDMA. In the second subsystem, the condition of group hopping is dropped, resulting in a more general system, namely individual subcarrier frequency hopping MC-CDMA (ISFH/MC-CDMA). This research found that with the introduction of SFH, both of GSFH/MC-CDMA and ISFH/MC-CDMA sys- tems generate less MAI power than the basic MC-CDMA system during asyn- chronous transmission. Because of this, both SFH systems are shown to outper- form MC-CDMA in terms of BER. This improvement, however, is at the expense of spectral widening. In the third part of this thesis, base station polarization diversity, as another MAI reduction technique, is introduced to asynchronous MC-CDMA. The com- bined system is referred to as Pol/MC-CDMA. In this part a new optimum com- bining technique namely maximal signal-to-MAI ratio combining (MSMAIRC) is proposed to combine the signals in two base station antennas. With the applica- tion of MSMAIRC and in the absents of additive white Gaussian noise (AWGN), the resulting signal-to-MAI ratio (SMAIR) is not only maximized but also in- dependent of cross polarization discrimination (XPD) and antenna angle. In the case when AWGN is present, the performance of MSMAIRC is still affected by the XPD and antenna angle, but to a much lesser degree than the traditional maximal ratio combining (MRC). Furthermore, this research found that the BER performance for Pol/MC-CDMA can be further improved by changing the angle between the two receiving antennas. Hence the optimum antenna angles for both MSMAIRC and MRC are derived and their effects on the BER performance are compared. With the derived optimum antenna angle, the Pol/MC-CDMA system is able to obtain the lowest BER for a given XPD.
Resumo:
This paper presents the possibility of utilizing a current source topology instead of a voltage source as an efficient, flexible and reliable power supply for plasma applications. A buck-boost converter with a current controller has been used to transfer energy from an inductor to a plasma system. A control strategy has also been designed to satisfy all the desired purposes. The main concept behind this topology is to provide high dv/dt regardless of the switching speed of a power switch and to control the current level to properly transfer adequate energy to various plasma applications.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.