906 resultados para State estimation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a framework for synchronising multiple triggered sensors with respect to a local clock using standard computing hardware. Providing sensor measurements with accurate and meaningful timestamps is important for many sensor fusion, state estimation and control applications. Accurately synchronising sensor timestamps can be performed with specialised hardware, however, performing sensor synchronisation using standard computing hardware and non-real-time operating systems is difficult due to inaccurate and temperature sensitive clocks, variable communication delays and operating system scheduling delays. Results show the ability of our framework to estimate time offsets to sub-millisecond accuracy. We also demonstrate how synchronising timestamps with our framework results in a tenfold reduction in image stabilisation error for a vehicle driving on rough terrain. The source code will be released as an open source tool for time synchronisation in ROS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an efficient noniterative method for distribution state estimation using conditional multivariate complex Gaussian distribution (CMCGD). In the proposed method, the mean and standard deviation (SD) of the state variables is obtained in one step considering load uncertainties, measurement errors, and load correlations. In this method, first the bus voltages, branch currents, and injection currents are represented by MCGD using direct load flow and a linear transformation. Then, the mean and SD of bus voltages, or other states, are calculated using CMCGD and estimation of variance method. The mean and SD of pseudo measurements, as well as spatial correlations between pseudo measurements, are modeled based on the historical data for different levels of load duration curve. The proposed method can handle load uncertainties without using time-consuming approaches such as Monte Carlo. Simulation results of two case studies, six-bus, and a realistic 747-bus distribution network show the effectiveness of the proposed method in terms of speed, accuracy, and quality against the conventional approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper compares closed-loop performance of seeker-based and radar-based estimators for surface-to-air interception through 6-degree-of-freedom simulation using proportional navigation guidance.Ground radar measurements are evader range, azimuth and elevation angles contaminated by Gaussian noise. Onboard seeker measurements are pursuer-evader relative range, range rate also contaminated by Gaussian noise. The gimbal angles and line-of-sight rates in the gimbal frame,contaminated by time-correlated non-Gaussian noise with realistic numerical values are also available as measurements. In both the applications, extended Kalman filter with Gaussian noise assumption are used for state estimation. For a typical engagement, it is found that,based on Monte Carlo studies, seeker estimator outperforms radar estimator in terms of autopilot demand and reduces the miss distance.Thus, a seeker estimator with white Gaussian assumption is found to be adequate to handle the measurements even in the presence of non-Gaussian correlated noise. This paper uses realistic numerical values of all noise parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.

This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.

The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review will focus on four areas of motor control which have recently been enriched both by neural network and control system models: motor planning, motor prediction, state estimation and motor learning. We will review the computational foundations of each of these concepts and present specific models which have been tested by psychophysical experiments. We will cover the topics of optimal control for motor planning, forward models for motor prediction, observer models of state estimation arid modular decomposition in motor learning. The aim of this review is to demonstrate how computational approaches, as well as proposing specific models, provide a theoretical framework to formalize the issues in motor control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.