959 resultados para Spherical space form


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen: La salud mental y el bienestar son fundamentales para nuestra capacidad colectiva y individual como seres humanos de pensar, de exteriorizar los sentimientos, de establecer y mantener relaciones, para estudiar, para perseguir las actividades de ocio, para tomar decisiones diarias y para disfrutar de una vida plena. Una adolescencia saludable es un prerrequisito para una vida adulta saludable. Sin embargo, la realidad actual presenta un panorama preocupante. La formación del capital mental individual y colectivo - especialmente en las primeras etapas de la vida - está siendo retenida por una serie de riesgos evitables para la salud mental (World Health Organization [WHO], 2013). Los adolescentes del sur de Europa (región que ha sido más severamente afectada por la crisis financiera; e.g., Portugal) son señalados como un grupo extremadamente vulnerable, ya que su salud mental fácilmente podría ser influenciada por las dificultades económicas de sus padres y la escasez de solidaridad social (European Parliament, 2012). La promoción de la salud mental de los adolescentes es considerada como una preocupación fundamental (WHO, 2005a, 2013). En este ámbito, las intervenciones centradas en la promoción de la literacía de la salud mental han revelado importantes ventajas en la prevención, reconocimiento, intervención precoz y la reducción del estigma (Pinfold, Stuart, Thornicroft & Arboleda-Florez, 2005; Pinfold, Toulmin, Thornicroft, Huxley, Farmer & Graham, 2003; Schulze, Richter-Werling, Matschinger & Angermeyer, 2003; Stuart, 2006). En consonancia con los marcos de promoción de la salud mentales propuestos por la Organización Mundial de la Salud (2005a), tenemos que involucrar a jóvenes en los ambientes donde interactúan (Burns, 2011). Las escuelas son implícitamente uno de los locales más importantes para la promoción de la salud mental de los adolescentes (Barry, Clarke, Jenkins & Patel, 2013; WHO, 2001). El proyecto “Abrir Espacio para la Salud Mental – Promoción de la salud mental en adolescentes (12-14 años)” tiene como objetivo incrementar literacía de la salud mental en los jóvenes. En el primer año se ha desarrollado un instrumento de evaluación - Mental Health Literacy questionnaire (MHLq) - y la intervención para la promoción de la salud mental. La intervención consiste en 2 sesiones, 90 minutos cada una, implementadas con intervalo de una semana. Siguen una metodología interactiva, utilizando dinámicas de grupo, videos, música y discusión. El estudio de la eficacia de la intervención se lleva a cabo mediante un análisis pre y pos-test con el MHLq, utilizando un grupo experimental y un grupo de control. Este artículo presenta los resultados preliminares de la eficacia de la intervención de promoción de la salud mental en una muestra de 100 adolescentes portugueses (12-14 años). El pos-test mostró un incremento de los niveles de conocimientos de salud mental y estrategias de autoayuda. Los resultados sugieren que la intervención desarrollada parece ser adecuada al objetivo propuesto y refuerzan la creencia de que intervenciones escolares, sistemáticas y sostenibles, para la promoción de la salud mental con jóvenes, es un enfoque prometedor para la promoción de la literacía de la salud mental (Schulze et al., 2003; Rickwood et al., 2005; Corrigan et al., 2007; WHO, 2010).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation DNS of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shearinduced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the spacetime correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physical model is presented to describe the kinds of static forces responsible for adhesion of nano-scale copper metal particles to silicon surface with a fluid layer. To demonstrate the extent of particle cleaning, Received in revised form equilibrium separation distance (ESD) and net adhesion force (NAF) of a regulated metal particle with different radii (10-300 nm) on the silicon surface in CO2-based cleaning systems under different pressures were simulated. Generally, increasing the pressure of the cleaning system decreased the net adhesion force between spherical copper particle and silicon surface entrapped with medium. For CO2 + isopropanol cleaning system, the equilibrium separation distance exhibited a maximum at temperature 313.15 K in the Equilibrium separation distance regions of pressure space (1.84-8.02 MPa). When the dimension of copper particle was given, for example, High pressure 50 nm radius particles, the net adhesion force decreased and equilibrium separation distance increased with increased pressure in the CO2 + H2O cleaning system at temperature 348.15 K under 2.50-12.67 MPa pressure range. However, the net adhesion force and equilibrium separation distance both decreased with an increase in surfactant concentration at given pressure (27.6 or 27.5 MPa) and temperature (318 or 298 K) for CO2 + H2O with surfactant PFPE COO-NH4+ or DiF(8)-PO4-Na+. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.

It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.

Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.

The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.

Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.

Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.

The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.

Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave-theoretical analysis of acoustic and elastic waves refracted by a spherical boundary across which both velocity and density increase abruptly and thence either increase or decrease continuously with depth is formulated in terms of the general problem of waves generated at a steady point source and scattered by a radially heterogeneous spherical body. A displacement potential representation is used for the elastic problem that results in high frequency decoupling of P-SV motion in a spherically symmetric, radially heterogeneous medium. Through the application of an earth-flattening transformation on the radial solution and the Watson transform on the sum over eigenfunctions, the solution to the spherical problem for high frequencies is expressed as a Weyl integral for the corresponding half-space problem in which the effect of boundary curvature maps into an effective positive velocity gradient. The results of both analytical and numerical evaluation of this integral can be summarized as follows for body waves in the crust and upper mantle:

1) In the special case of a critical velocity gradient (a gradient equal and opposite to the effective curvature gradient), the critically refracted wave reduces to the classical head wave for flat, homogeneous layers.

2) For gradients more negative than critical, the amplitude of the critically refracted wave decays more rapidly with distance than the classical head wave.

3) For positive, null, and gradients less negative than critical, the amplitude of the critically refracted wave decays less rapidly with distance than the classical head wave, and at sufficiently large distances, the refracted wave can be adequately described in terms of ray-theoretical diving waves. At intermediate distances from the critical point, the spectral amplitude of the refracted wave is scalloped due to multiple diving wave interference.

These theoretical results applied to published amplitude data for P-waves refracted by the major crustal and upper mantle horizons (the Pg, P*, and Pn travel-time branches) suggest that the 'granitic' upper crust, the 'basaltic' lower crust, and the mantle lid all have negative or near-critical velocity gradients in the tectonically active western United States. On the other hand, the corresponding horizons in the stable eastern United States appear to have null or slightly positive velocity gradients. The distribution of negative and positive velocity gradients correlates closely with high heat flow in tectonic regions and normal heat flow in stable regions. The velocity gradients inferred from the amplitude data are generally consistent with those inferred from ultrasonic measurements of the effects of temperature and pressure on crustal and mantle rocks and probable geothermal gradients. A notable exception is the strong positive velocity gradient in the mantle lid beneath the eastern United States (2 x 10-3 sec-1), which appears to require a compositional gradient to counter the effect of even a small geothermal gradient.

New seismic-refraction data were recorded along a 800 km profile extending due south from the Canadian border across the Columbia Plateau into eastern Oregon. The source for the seismic waves was a series of 20 high-energy chemical explosions detonated by the Canadian government in Greenbush Lake, British Columbia. The first arrivals recorded along this profile are on the Pn travel-time branch. In northern Washington and central Oregon their travel time is described by T = Δ/8.0 + 7.7 sec, but in the Columbia Plateau the Pn arrivals are as much as 0.9 sec early with respect to this line. An interpretation of these Pn arrivals together with later crustal arrivals suggest that the crust under the Columbia Plateau is thinner by about 10 km and has a higher average P-wave velocity than the 35-km-thick, 62-km/sec crust under the granitic-metamorphic terrain of northern Washington. A tentative interpretation of later arrivals recorded beyond 500 km from the shots suggests that a thin 8.4-km/sec horizon may be present in the upper mantle beneath the Columbia Plateau and that this horizon may form the lid to a pronounced low-velocity zone extending to a depth of about 140 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.

Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.

One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics.