940 resultados para Spectroscopy Cyclic Voltammetry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(6-tert-butyl-3,4-dihydro-2H-1,3-benzoxazine) was synthesized by thermally activated cationic ring opening polymerization. The structure of the polymer was confirmed by spectral and thermal studies. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were estimated using cyclic voltammetry and optical absorption. Modulated photocurrent measurement technique was employed to study the spectral and field dependence of photocurrent. Photocurrent of the order of 1.5 micro A/m2 was obtained for polymer at a biasing electric field of 40 V/mico m.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Der pH-Wert stellt in der Chemie, Physik, Biologie, Pharmazie und Medizin eine wichtige Meßgröße dar, da eine Vielzahl von Reaktionen durch den pH-Wert bestimmt wird. In der Regel werden zur pH-Wert-Messung Glaselektroden eingesetzt. Hierbei konnte der pH-sensitive Bereich zwar bis auf einige Mikrometer reduziert werden, aber die Gesamtab-messungen betragen immer noch 15-20 cm. Mit der Einführung miniaturisierter Reaktionsgefäße ist daher der Bedarf an miniaturisierten Sensoren enorm gestiegen. Um in solchen Gefäßen Reaktionsparameter wie z. B. den pH-Wert zu kontrollieren, müssen die Gesamtabmessungen der Sensoren verringert werden. Dies lässt sich mit Hilfe der Mikrostrukturtechnik von Silizium realisieren. Hiermit lassen sich Strukturen und ganze Systeme bis in den Nanometerbereich herstellen. Basierend auf Silizium und Gold als Elektrodenmaterial wurden im Rahmen dieser Arbeit verschiedene Interdigitalstrukturen hergestellt. Um diese Strukturen zur pH-Wert-Messungen einsetzen zu können, müssen sie mit einer pH-sensitiven Schicht versehen werden. Hierbei wurde Polyanilin, ein intrinsisch leitendes Polymer, aufgrund seine pH-abhängigen elektrischen und optischen Verhaltens eingesetzt. Die Beschichtung dieser Sensoren mit Polyanilin erfolgte vorwiegend elektrochemisch mit Hilfe der Zyklovoltammetrie. Neben der Herstellung reiner Polyanilinfilme wurden auch Kopolymerisationen von Anilin und seinen entsprechenden Aminobenzoesäure- bzw. Aminobenzensulfonsäurederivaten durchgeführt. Ergebnisse dazu werden vorgestellt und diskutiert. Zur Charakterisierung der resultierenden Polyanilin- und Kopolymerfilme auf den Inter-digitalstrukturen wurden mit Hilfe der ATR-FT-IR-Spektroskopie Spektren aufgenommen, die gezeigt und diskutiert werden. Eine elektrochemische Charakterisierung der Polymere erfolgte mittels der Zyklovoltammetrie. Die mit Polyanilin bzw. seinen Kopolymeren beschichteten Sensoren wurden dann für Widerstandsmessungen an den Polymerfilmen in wässrigen Medien eingesetzt. Polyanilin zeigt lediglich eine pH-Sensitivität in einem pH-Bereich von pH 2 bis pH 4. Durch den Einsatz der Kopolymere konnte dieser pH-sensitive Bereich jedoch bis zu einem pH-Wert von 10 ausgeweitet werden. Zur weiteren Miniaturisierung der Sensoren wurde das Konzept der interdigitalen Elektroden-paare auf Cantilever übertragen. Die pH-sensitive Zone konnte dabei auf 500 µm2 bei einer Gesamtlänge des Sensors (Halter mit integriertem Cantilever) von 4 mm reduziert werden. Neben den elektrischen pH-abhängigen Eigenschaften können auch die optischen Eigen-schaften des Polyanilins zur pH-Detektion herangezogen werden. Diese wurden zunächst mit Hilfe der UV-VIS-Spektroskopie untersucht. Die erhaltenen Spektren werden gezeigt und kurz diskutiert. Mit Hilfe eines Raster-Sonden-Mikroskops (a-SNOM, Firma WITec) wurden Reflexionsmessungen an Polyanilinschichten durchgeführt. Zur weiteren Miniaturisierung wurden Siliziumdioxidhohlpyramiden (Basisfläche 400 µm2) mit Spitzenöffnungen in einem Bereich von 50-150 nm mit Polyanilin beschichtet. Auch hier sollten die optischen Eigenschaften des Polyanilins zur pH-Wert-Sensorik ausgenutzt werden. Es werden erste Messungen an diesen Strukturen in Transmission diskutiert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel Ru(II) complex containing an electron-poor, highly fluorinated PCPArF pincer ligand has been synthesized in good yield via a transcyclometalation reaction. The complex has been fully characterized by elemental analysis, 1D and 2D NMR techniques, LTV-vis spectroscopy, and cyclic voltammetry. Single-crystal X-ray structural analysis and DFT calculations were performed. The structural features and electronic properties of the remarkably stable PCPArF-Ru(II) complex 4 have been investigated and show unanticipated differences compared to its protio analogue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although there has been much interest in the chemistry of bimetallic transition metal complexes, compounds with naphthalene or anthracene as bridging ligands are still rare. In this article, we describe the synthesis of the homodinuclear iron complexes [Cp*Fe(μ-η4:η4-L)FeCp*] (1: L = C10H8, 2: L = C14H10; Cp* = η5-C5Me5). The complexes were characterized by 1H and 13C{1H} NMR, UV/Vis, and 57Fe Mössbauer spectroscopy, and their molecular structures were determined by X-ray crystallography. Both complexes are diamagnetic as a result of the strong magnetic coupling of the 17e FeI centers mediated by the polyarene bridge. An analysisof the redox behavior of 1 and 2 by cyclic voltammetry andUV/Vis spectroelectrochemistry shows that the complexes can be oxidized reversibly in two well-separated one-electron steps to the monocation [Cp*Fe(μ-L)FeCp*]+ and the dication [Cp*Fe(μ-L)FeCp*]2+. The reduction to the monoanion [Cp*Fe(μ-L)FeCp*]– was also observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radical cations of a heptathienoacene a,b-substituted with four n-decyl side groups (D4T7C+) form exceptionally stable p-dimer dications already at ambient temperature (Chem. Comm. 2011, 47, 12622). This extraordinary p-dimerization process is investigated here with a focus on the ultimate[D4T7C+]2 p-dimer dication and yet-unreported transitoryspecies formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the p-dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one-electron oxidation: 1) a different transient conformation of the ultimate [D4T7C+]2 p-dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2C+ p-dimer radical cations formed prior to the fully oxidized [D4T7]2C+ p-dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four new diruthenium complexes [{(η5-C5Me5)Ru(dppe)}2(μ-CuC–L–CuC)] featuring different bridging isomeric diethynyl benzodithiophenes viz. L = benzo[1,2-b;4,5-b’]dithiophene (complex 1), benzo[2,1-b;4,5b’]dithiophene (complex 2), benzo[1,2-b;3,4-b’]dithiophene (complex 3) and benzo[1,2-b;4,3-b’]-dithiophene (complex 4), were synthesized and characterized by molecular spectroscopic and crystallographicmethods. The subtle changes in the molecular structure introduced by the diethynyl benzodithiophene isomers have a notable impact on the stability of the oxidized complexes and their absorption characteristics in the visible-NIR and IR spectral domains. Electronic properties of stable oxidized complexes[1]n+ and [4]n+ (n = 1, 2) were investigated by cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry as well as DFT and TDDFT calculations. The results document the largely bridgelocalized character of the oxidation of parents 1 and 4. Cations [2]+ and [3]+ are too unstable at ambient temperature to afford their unambiguous characterization. UV-vis-NIR absorption spectral data combined with TDDFT calculations (BLYP35) reveal that the broad electronic absorption of [1]+ and [4]+ in the NIR region has a mixed intraligand π–π* and MLCT character, with similar contribution from their spin-delocalized trans and cis conformers. A spin-localized (mixed-valence) rotamer was only observed for [1]+ at ambient temperature as a minor component on the time scale of IR spectroscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

alpha-diamines, such as ethylendiamine and o-phenylendiamine, add to 3,4-aryl-disubstituted 1,2,5-thiadiazole 1,1-dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6-b]-2,3-dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide gives 3,4-disubstituted thiadiazoildine 1,1-dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.