996 resultados para Spectral measure
Resumo:
This paper extends the work of Thompson, Beauvais and Lyness (1999) to develop a more comprehensive measure of work-life balance culture. Thompson et al. developed a survey based on three sub-dimensions which examine work-family culture. We have extended this to incorporate extra dimensions, and to broaden the measure to encompass life aspects beyond the family. Two studies were conducted in order to test and refine the measure. Over 700 participants in the first study completed the survey, and the Confirmatory Factor Analysis results show that the extended measure is robust. Further, a second study with a sample of 629 participants confirmed the general measure, with slight adaptations. The results are discussed in relation to the use of the measure for work-life balance research.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
Objective: Empowerment is a complex process of psychological, social, organizational and structural change. It allows individuals and groups to achieve positive growth and effectively address the social and psychological impacts of historical oppression, marginalization and disadvantage. The Growth and Empowerment Measure (GEM) was developed to measure change in dimensions of empowerment as defi ned and described by Aboriginal Australians who participated in the Family Well Being programme.---------- Method: The GEM has two components: a 14-item Emotional Empowerment Scale (EES14) and 12 Scenarios (12S). It is accompanied by the Kessler 6 Psychological Distress Scale (K6), supplemented by two questions assessing frequency of happy and angry feelings. For validation, the measure was applied with 184 Indigenous Australian participants involved in personal and/or organizational social health activities.---------- Results: Psychometric analyses of the new instruments support their validity and reliability and indicate two-component structures for both the EES (Self-capacity; Inner peace) and the 12S (Healing and enabling growth, Connection and purpose). Strong correlations were observed across the scales and subscales. Participants who scored higher on the newly developed scales showed lower distress on the K6, particularly when the two additional questions were included. However, exploratory factor analyses demonstrated that GEM subscales are separable from the Kessler distress measure.---------- Conclusion: The GEM shows promise in enabling measurement and enhancing understanding of both process and outcome of psychological and social empowerment within an Australian Indigenous context.
Resumo:
Background: Alcohol craving is associated with greater alcohol-related problems and less favorable treatment prognosis. The Obsessive Compulsive Drinking Scale (OCDS) is the most widely used alcohol craving instrument. The OCDS has been validated in adults with alcohol use disorders (AUDs), which typically emerge in early adulthood. This study examines the validity of the OCDS in a nonclinical sample of young adults. Methods: Three hundred and nine college students (mean age of 21.8 years, SD = 4.6 years) completed the OCDS, Alcohol Use Disorders Identification Test (AUDIT), and measures of alcohol consumption. Subjects were randomly allocated to 2 samples. Construct validity was examined via exploratory factor analysis (n = 155) and confirmatory factor analysis (n = 154). Concurrent validity was assessed using the AUDIT and measures of alcohol consumption. A second, alcohol-dependent sample (mean age 42 years, SD 12 years) from a previously published study (n = 370) was used to assess discriminant validity. Results: A unique young adult OCDS factor structure was validated, consisting of Interference/Control, Frequency of Obsessions, Alcohol Consumption and Resisting Obsessions/Compulsions. The young adult 4-factor structure was significantly associated with the AUDIT and alcohol consumption. The 4 factor OCDS successfully classified nonclinical subjects in 96.9% of cases and the older alcohol-dependent patients in 83.7% of cases. Although the OCDS was able to classify college nonproblem drinkers (AUDIT <13, n = 224) with 83.2% accuracy, it was no better than chance (49.4%) in classifying potential college problem drinkers (AUDIT score ≥13, n = 85). Conclusions: Using the 4-factor structure, the OCDS is a valid measure of alcohol craving in young adult populations. In this nonclinical set of students, the OCDS classified nonproblem drinkers well but not problem drinkers. Studies need to further examine the utility of the OCDS in young people with alcohol misuse.
Resumo:
The Extended Adolescent Injury Checklist (E-AIC), a self-report measure of injury based on the model of the Adolescent Injury Checklist (AIC), was developed for use in the evaluation of school-based interventions. The three stages of this development involved focus groups with adolescents and consultations with medical staff, pilot testing of the revised AIC in a high school context, and use of the finalised checklist in pre- and post-questionnaires to examine its utility. Results revealed that responses to the final version of the E-AIC were meaningful and remained consistent over time. The E-AIC appears to be a promising measure of adolescent injury that is simple, time-efficient and appropriate for use in the evaluation of school-based injury prevention programs.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
This paper develops a composite participation index (PI) to identify patterns of transport disadvantage in space and time. It is operationalised using 157 weekly activity-travel diaries data collected from three case study areas in rural Northern Ireland. A review of activity space and travel behaviour research found that six dimensional indicators of activity spaces were typically used including the number of unique locations visited, distance travelled, area of activity spaces, frequency of activity participation, types of activity participated in, and duration of participation in order to identify transport disadvantage. A combined measure using six individual indices were developed based on the six dimensional indicators of activity spaces, by taking into account the relativity of the measures for weekdays, weekends, and for a week. Factor analyses were conducted to derive weights of these indices to form the PI measure. Multivariate analysis using general linear models of the different indicators/indices identified new patterns of transport disadvantage. The research found that: indicator based measures and index based measures are complement each other; interactions between different factors generated new patterns of transport disadvantage; and that these patterns vary in space and time. The analysis also indicates that the transport needs of different disadvantaged groups are varied.
Resumo:
Although transport related social exclusion has been identified through zonal accessibility measures in the recent past, the debate has shifted from zonal to individual level measures. One way to identify disadvantaged individuals is to measure their size of participation in society (activity spaces). After reviewing existing literature, this paper has found two approaches to measure the activity spaces. One approach is based on the time-geographic potential path area (PPA) concept. The size of the PPA has largely been used as an indicator to the size of potential activity spaces and consequently individual accessibility. The limitations of the PPA concept have been identified in this paper and it is argued cannot be applied as a measure of social exclusion. The other approach is based on individuals’ actual travel activity participation called actual activity spaces. The size of actual activity spaces possesses a good potential measure of social exclusion. However, the indicators to measure the size of actual activity spaces are multidimensional representing the different aspects of social exclusion. The development of a unified approach has therefore been found to be important. This paper has developed a participation index (PI) using the different dimensions of actual activity spaces encountered. A framework has also been developed to operationalise the concept in GIS. The framework, on the one hand, will visualize individuals’ actual travel behaviour in real geographic space; on the other hand, it will calculate the size of their participation in society.
Resumo:
Objective Substance-related expectancies are associated with substance use and post-substance use thoughts, feelings and behaviours. The expectancies held by specific cultural or sub-cultural groups have rarely been investigated. This research maps expectancies specific to gay and other men who have sex with men (MSM) and their relationship with substance patterns and behaviours following use, including sexual practices (e.g., unprotected anal intercourse). This study describes the development of a measure of such beliefs for cannabis, the Cannabis Expectancy Questionnaire for Men who have Sex with Men (CEQ-MSM). Method Items selected through a focus group and interviews were piloted on 180 self-identified gay or other MSM via an online questionnaire. Results Factor analysis revealed six distinct substance reinforcement domains (“Enhanced sexual experience”, “Sexual negotiation”, “Cognitive impairment”, “Social and emotional facilitation”, “Enhanced sexual desire”, and “Sexual inhibition”). The scale was associated with consumption patterns of cannabis, and in a crucial test of discriminant validity not with the consumption of alcohol or stimulants. Conclusions The CEQ-MSM represents a reliable and valid measure of outcome expectancies, related to cannabis among MSM. Future applications of the CEQ-MSM in health promotion, clinical settings and research may contribute to reducing harm associated with substance use among MSM, including HIV transmission.
Resumo:
The aim of this study was to apply the principles of content, criterion, and construct validation to a new questionnaire specifically designed to measure foot-health status. One hundred eleven subjects completed two different questionnaires designed to measure foot health (the new Foot Health Status Questionnaire and the previously validated Foot Function Index) and underwent a clinical examination in order to provide data for a second-order confirmatory factor analysis. Presented herein is a psychometrically evaluated questionnaire that contains 13 items covering foot pain, foot function, footwear, and general foot health. The tool demonstrates a high degree of content, criterion, and construct validity and test-retest reliability.
Resumo:
In many bridges, vertical displacements are the most relevant parameter for monitoring in the both short and long term. However, it is difficult to measure vertical displacements of bridges and yet they are among the most important indicators of structural behaviour. Therefore, it prompts a need to develop a simple, inexpensive and yet more practical method to measure vertical displacements of bridges. With the development of fiber-optics technologies, fiber Bragg grating (FBG) sensors have been widely used in structural health monitoring. The advantages of these sensors over the conventional sensors include multiplexing capabilities, high sample rate, small size and electro magnetic interference (EMI) immunity. In this paper, methods of vertical displacement measurements of bridges are first reviewed. Then, FBG technology is briefly introduced including principle, sensing system, characteristics and different types of FBG sensors. Finally, the methodology of vertical displacement measurements using FBG sensors is presented and a trial test is described. It is concluded that using FBG sensors is feasible to measure vertical displacements of bridges. This method can be used to understand global behaviour of bridge‘s span and can further develop for structural health monitoring techniques such as damage detection.