994 resultados para Slip Flow
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.
Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow
Resumo:
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.
Resumo:
Security-critical communications devices must be evaluated to the highest possible standards before they can be deployed. This process includes tracing potential information flow through the device's electronic circuitry, for each of the device's operating modes. Increasingly, however, security functionality is being entrusted to embedded software running on microprocessors within such devices, so new strategies are needed for integrating information flow analyses of embedded program code with hardware analyses. Here we show how standard compiler principles can augment high-integrity security evaluations to allow seamless tracing of information flow through both the hardware and software of embedded systems. This is done by unifying input/output statements in embedded program execution paths with the hardware pins they access, and by associating significant software states with corresponding operating modes of the surrounding electronic circuitry.
Groundwater flow model of the Logan river alluvial aquifer system Josephville, South East Queensland
Resumo:
The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
In the era of late modernism, various pressures play a decisive role in shaping the texture and meaning of the world around us. Population, work, transportation, new technologies of information and communication, lifestyle cultures and other forces are increasingly mobile, and this in turn helps make for a new set of public and personal surroundings. Social life everywhere now appears to share more and more in an international (if not a global) order, even if inequality and stratification remain common inside territories and across territories. Still, the perception is that a particular cultural life is increasingly universal. More and more consumers come to share in its practices and products, with those products becoming more and more homogeneous. This standardization argument finds much support in the apparent internationalization of many elements of media, entertainment, leisure and lifestyle cultures, with cultural conglomerates determined to maximize their global market reach. Once upon a time, in order to understand the economic, political and cultural forces affecting citizens and society, it was mostly deemed sufficient to look within the boundaries of the nation-state. Over the past two decades, these same pressures of globalization have impacted on critical research, highlighting the methodological need to adopt an optic that is more cross-border and transcultural as a means of gaining greater understanding of cultural life.
Resumo:
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSFUM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
Texture based techniques for visualisation of unsteady vector fields have been applied for the visualisation of a Finite volume model for variably saturated groundwater flow through porous media. This model has been developed by staff in the School of Mathematical Sciences QUT for the study of salt water intrusion into coastal aquifers. This presentation discusses the implementation and effectiveness of the IBFV algorithm in the context of visualisation of the groundwater simulation outputs.