955 resultados para Sliding mode


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dentro de las técnicas de control de procesos no lineales, los controladores de estructura variable con modos deslizantes (VSC-SM en sus siglas en inglés) han demostrado ser una solución robusta, por lo cual han sido ampliamente estudiados en las cuatro últimas décadas. Desde los años ochenta se han presentado varios trabajos enfocados a especificar controladores VSC aplicados a sistemas de tiempo discreto (DVSC), siendo uno de los mayores intereses de análisis obtener las mismas prestaciones de robustez e invarianza de los controladores VSC-SM. El objetivo principal del trabajo de Tesis Doctoral consiste en estudiar, analizar y proponer unos esquemas de diseño de controladores DVSC en procesos multivariable tanto lineales como no lineales. De dicho estudio se propone una nueva filosofía de diseño de superficies deslizantes estables donde se han considerado aspectos hasta ahora no estudiados en el uso de DVSC-SM como son las limitaciones físicas de los actuadores y la dinámica deslizante no ideal. Lo más novedoso es 1) la propuesta de una nueva metodología de diseño de superficies deslizantes aplicadas a sistemas MIMO lineales y la extensión del mismo al caso de sistemas multivariables no lineales y 2) la definición de una nueva ley de alcance y de una ley de control robusta aplicada a sistemas MIMO, tanto lineales como no lineales, incluyendo un esquema de reducción de chattering. Finalmente, con el fin de ilustrar la eficiencia de los esquemas presentados, se incluyen ejemplos numéricos relacionados con el tema tratado en cada uno de los capítulos de la memoria. ABSTRACT Over the last four decades, variable structure controllers with sliding mode (VSC-SM) have been extensively studied, demonstrating to be a robust solution among robust nonlinear processes control techniques. Since the late 80s, several research works have been focused on the application of VSC controllers applied to discrete time or sampled data systems, which are known as DVSC-SM, where the most extensive source of analysis has been devoted to the robustness and invariance properties of VSC-SM controllers when applied to discrete systems. The main aim of this doctoral thesis work is to study, analyze and propose a design scheme of DVSC-SM controllers for lineal and nonlinear multivariable discrete time processes. For this purpose, a new design philosophy is proposed, where various design features have been considered that have not been analyzed in DVSC design approaches. Among them, the physical limitations and the nonideal dynamic sliding mode dynamics. The most innovative aspect is the inclusion of a new design methodology applied to lineal sliding surfaces MIMO systems and the extension to nonlinear multivariable systems, in addition to a new robust control law applied to lineal and nonlinear MIMO systems, including a chattering reduction scheme. Finally, to illustrate the efficiency of the proposed schemes, several numerical examples applied to lineal and nonlinear systems are included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intriguing lattice dynamics has been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct acoustic phonon-like modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states, and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents a proposal of speed servomechanisms without the use of mechanical sensors (sensorless) using induction motors. A comparison is performed and propose techniques for pet rotor speed, analyzing performance in different conditions of speed and load. For the determination of control technique, initially, is performed an analysis of the technical literature of the main control and speed estimation used, with their characteristics and limitations. The proposed technique for servo sensorless speed induction motor uses indirect field-oriented control (IFOC), composed of four controllers of the proportional-integral type (PI): rotor flux controller, speed controller and current controllers in the direct and quadrature shaft. As the main focus of the work is in the speed control loop was implemented in Matlab the recursive least squares algorithm (RLS) for identification of mechanical parameters, such as moment of inertia and friction coefficient. Thus, the speed of outer loop controller gains can be self adjusted to compensate for any changes in the mechanical parameters. For speed estimation techniques are analyzed: MRAS by rotóricos fluxes MRAS by counter EMF, MRAS by instantaneous reactive power, slip, locked loop phase (PLL) and sliding mode. A proposition of estimation in sliding mode based on speed, which is performed a change in rotor flux observer structure is displayed. To evaluate the techniques are performed theoretical analyzes in Matlab simulation environment and experimental platform in electrical machinery drives. The DSP TMS320F28069 was used for experimental implementation of speed estimation techniques and check the performance of the same in a wide speed range, including load insertion. From this analysis is carried out to implement closed-loop control of sensorless speed IFOC structure. The results demonstrated the real possibility of replacing mechanical sensors for estimation techniques proposed and analyzed. Among these, the estimator based on PLL demonstrated the best performance in various conditions, while the technique based on sliding mode has good capacity estimation in steady state and robustness to parametric variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artículo propone una nueva estrategia de control basada en medidas continuas de glucosa y un controlador por modo deslizante que se habitúa (HSMC). El HSMC es desarrollado, combinando la ley de control por modo deslizante y los principios de control por habituación. El HSMC aplicado a la regulación de glucosa sanguínea en la unidad de cuidados intensivos, incluye tanto entrada de glucosa, como de infusión de insulina intravasculares a fin de proveer el suministro de nutrición y mejorar el rechazo a la perturbación. El estudio basado en simulaciones (in silico), usando un modelo fisiológico de la dinámica glucosa-insulina, muestra que la estrategia de control propuesta funciona apropiadamente. Finalmente, se compara el desempeño del controlador propuesto con respecto a un controlador PID estándar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.