962 resultados para Sistemas nao lineares
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
In this work we studied the method to solving linear equations system, presented in the book titled "The nine chapters on the mathematical art", which was written in the first century of this era. This work has the intent of showing how the mathematics history can be used to motivate the introduction of some topics in high school. Through observations of patterns which repeats itself in the presented method, we were able to introduce, in a very natural way, the concept of linear equations, linear equations system, solution of linear equations, determinants and matrices, besides the Laplacian development for determinants calculations of square matrices of order bigger than 3, then considering some of their general applications
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a methodology for solving a set of linear sparse equations on vector computers. The new methodology is able to exploit the matrix and vector sparsities. The implementation was made on a CRAY Y-MP 2E/232 computer and the results were taken from electric power systems with 118, 320, 725 and 1729 buses. The proposed methodology was compared with three previous methods and the results show the superior performance of the new one.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.
Resumo:
Este trabalho consiste na proposta de uma sequencia didática para o ensino de Sistemas de Equações Algébricas Lineares na qual estabelecemos uma conexão entre o Método da Substituição e o buscando a conversão de registros de representação. O objetivo da proposta foi verificar se os alunos conseguem realizar a conexão entre os dois métodos desenvolvendo a conversão do método da substituição no Método do escalonamento caracterizando assim, o aprendizado do objeto matemático estudado, segundo a teoria de registros de representação semiótica de Raimund Duval. A pesquisa foi realizada com alunos do ensino médio em uma escola da rede pública estadual da cidade de Belém e os resultados apontaram para o estabelecimento de uma conexão entre os dois métodos empregados no processo de resolução de sistemas.
Resumo:
O objetivo deste trabalho é a otimização da largura de banda de antenas linear e planar para aplicações em sistemas de banda larga. Nesse sentido, foi feito um estudo das técnicas de análise, aumento da largura de banda e otimização adequadas para o problema em questão. Como técnica de análise, foi utilizado o método dos momentos, o qual está apresentado no capítulo II. Para aumentar a largura de banda, foram utilizadas as técnicas de colocação de elementos parasitas e construção de fendas no radiador, descritos sucintamente no capítulo III. Como algoritmo de otimização, foi utilizado o algoritmo genético, descrito sucintamente no capítulo II. Neste trabalho, são apresentadas duas propostas de antenas, uma antena dipolo linear combinada com quatros espiras parasitas, capítulo IV, e uma antena planar do tipo espira, capítulo V. No primeiro caso, foram utilizados elementos parasitas e o algoritmo genético para aumentar a largura de banda e, no segundo, foram empregadas fendas no radiador e a otimização paramétrica para este objetivo.