1000 resultados para Seqüências (Matemática)
Resumo:
Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.
Resumo:
La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.
Resumo:
La intención de este trabajo es presentar algunas teorías y concepciones de la Matemática Educativa y su implementación concreta en cursos de Cálculo Diferencial en una y varias variables. Se expondrán algunas ideas de la Resolución de Problemas, Investigación - Acción, Constructivismo Social (Teoría de Aprendizaje de Vigotsky) y algunos elementos de Ingeniería Didáctica. De todas estas teorias, se mencionan diversos ejemplos, implementados en los cursos de la Universidad de la República (Montevideo, Uruguay), entre los años 1995 y 2002. La exposición estará complementada con la presentación de resultados, y a partir de los mismos se obtendrán conclusiones y se formularán recomendaciones.
Resumo:
Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
El desarrollo de las competencias básicas científicas, matemáticas y tecnológicas son factibles cuando sus contenidos, conceptos y procesos; entre otros, se abordan desde una comprensión social y cuando se emplea un marco interdisciplinario para dar respuesta a los problemas. Los proyectos escolares es una estrategia para el aprendizaje de la ciencia, matemática y la Tecnología ya que potencializa en alumnas y alumnos la adquisición de una visión integrada de los fenómenos naturales y la comprensión de las diferentes teorías y modelos desde una dimensión sociocultural; sobre los que se van construyendo el conocimiento. Los objetivos del presente trabajo son (a) Promover la utilización de los proyectos escolares como una coestrategia para el desarrollo de habilidades cognitivas científicas y matemáticas y (b) Fortalecer el abordaje metodológico, para la iniciación de los niños y jóvenes en la investigación y formulación de proyectos de una forma interdisciplinaria.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
En este artículo presentamos los resultados cuantitativos sobre estados y cambios en el aprendizaje de la validación matemática (para los contenidos función de proporcionalidad directa y función cuadrática) en relación con diversas modalidades de enseñanza. En ellas se promovieron diferentes interacciones en el aula: interacciones entre experto y aprendiz (E-A) e interacciones en un grupo de aprendices (G-A). Los datos recabados y procesados, referidos al estado y al cambio producido en el aprendizaje de la validación, son individuales. Esto se ha llevado a cabo en la asignatura Matemática de nivel pre-universitario del Curso de Aprestamiento Universitario (CAU) en la Universidad Nacional de General Sarmiento (UNGS), de la provincia de Buenos Aires.
Resumo:
Pocas veces una obra, como científicos griegos, que se define a sí misma como una antología, extracto de las aportaciones más significativas de la ciencia griega, produce en el lector la sensación de tener entre las manos un verdadero mirador desde el que se observa, si no con la nitidez del primer plano sí con la visión que proporciona un punto desde el que se puede apreciar la enorme aportación de la ciencia griega a la cultura occidental y a la estructura del pensamiento científico actual.
Resumo:
El texto que sigue es un comentario sobre un libro de FW Lawvere y SH Schanuel de publicación reciente pero con una beca de gestación, que contiene una experiencia concreta introducción de conceptos de la teoría categorías del estadio temprano de enseñanza de las matemáticas. El comentario incluye cumbre de análisis comparativo de este experiencia actual con la protagonizada por PJ Hilton en el año 70. La diferencia entre ambas propuestas explican términos de la evolución general de la teoría a lo largo de la segunda mitad del presente siglo, particularmente en el último cuarto.
Resumo:
Saber cómo ha evolucionado y cómo evoluaciona la ciencia matemática ayuda a entender mejor las conexiones entre diferentes conceptos y procedimientos que la vertebran y permiten apreciar la naturaleza viva y humana. Como consecuencia, estos conocmientos contribuyen sin duda a enseñar mejor esta ciencia.
Resumo:
La delimitación de finalidades es un dato esencial para cualquier plan de formación: por ello, las finalidades de un currículo de matemáticas lo caracterizan en su extensión y alcance, y constituyen parte determinante en el proceso de su planificación.
Resumo:
El desarrollo de las habilidades para un conocimiento estadístico necesario es posible desarrollarlo y fortalecerlo por medio de variados recursos didácticos dispuestos para la enseñanza y aprendizaje. Dentro de los recursos disponibles es el texto de matemática el más utilizado por profesores y estudiantes. El texto debe entregar herramientas que permita a los estudiantes desarrollar una alfabetización matemática, realizando una focalización más explícita en los conocimientos, comprensión y habilidades requeridas para funcionar efectivamente en la vida diaria (PISA Chile, 2009).
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
En la presente contribución intentamos evidenciar cómo la geometría a lo largo de toda su historia ha desempeñado un papel fundamental interactivo con la ciencia natural, en particular con la física, y más en concreto aún con la mecánica. En la primera parte esbozamos nuestra visión de esta intima interrelación desde el alba de la geometría en China, Mesopotamia y Egipto hasta nuestros días.