982 resultados para Separation science
Resumo:
This paper reports an innovative development: concentrating gibbsite via reverse froth flotation in order to obtain a metallurgical-grade bauxite concentrate. Tailings from an industrial plant have undergone attrition scrubbing and desliming; the quartz silica contained in the tailings has undergone flotation. Starch was used as a depressant, and ether-amine as the cationic collector. Optimum pH is around 10.0. In pilot plant scale, a metallurgical-grade concentrate was obtained by assaying 42.3% available alumina with an alumina/insoluble silica mass ratio of 11.1. It contained the gibbsite and the iron and titanium bearing minerals. The concentrate was further upgraded by magnetic separation, leading to 54.0% available alumina, with an alumina/insoluble silica mass ratio of 12.6 at an overall available alumina recovery of 69.3% in the final concentrate (non-magnetic product). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new and promising nitrosyl ruthenium complex, [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3), bdqi-COOH is 3,4-diiminebenzoic acid and terpy is 2,2`-terpyridine, has been synthesized as a NO donor agent. The procedure used for [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3) synthesis has, apparently, yielded the formation of two isomers in which the ligand bdqi-COOH appears to be coordinated in its reduced form (bdcat-COOH), which could have differences in their pharmacological properties. Therefore, it was intended to separate the two possible isomers by high-performance liquid chromatography (HPLC) and to characterize them by high resolution mass spectrometry (QTOF MS) and by magnetic nuclear resonance spectroscopy (NMR). The results obtained by MS showed that the ESI-MS mass spectra of both HPLC column fractions, e.g. peak 1 and peak 2, are essentially equal, showing that both isomers display nearly identical gas-phase behavior with clusters of isotopologue ions centered at m/z 573, m/z 543 and m/z 513. Regarding the NMR analysis, the results showed that the positional isomerism is located in the bdqi-COOH ligand. From the observed results it can be concluded that the synthesis procedure that has been used results in the formation of two [Ru(terpy)(bdqi-COOH)NO](PF(6))(3) isomers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.
Resumo:
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
Resumo:
Objective: To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Design: Controlled clinical study. Setting: An assisted reproductive technology laboratory. Patient(s): Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. Intervention(s): One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. Main Outcome Measure(s): DNA fragmentation as measured by SCD. Result(s): There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. Conclusion(s): The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. (Fertil Steril (R) 2010;94:2626-30. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
Selostus: Ó-lactalbumiinin ja ¿̐ư-lactoglobuliinin sentrifugointierotuksen optimointi
Resumo:
Due to imbalance in genetic material contribution, gynecological samples collected following a sexual assault are challenging to process in order to resolve the male contributor's DNA profile. We set up a new and fast procedure for the recovery and separation of cells from cotton swabs, or other supports. Using spermatozoa specific CD52 antibody coupled to magnetic beads along with magnetic columns, this procedure was first developed and optimized by flow cytometry. It allows the recovery of two enriched cell fractions: a sperm fraction, mostly enriched with the alleged offender's spermatozoa, and a non-sperm fraction, mostly enriched with cells from the victim. Processing fresh as well as six months old mock samples, made of buccal swabs loaded with sperm dilutions, resulted in full single NGM SElect DNA profiles of the sperm donors, respectively the epithelial cells donors, for the sperm and the non-sperm fractions. Untreated duplicate samples processed in parallel only provided the autosomal DNA profiles of the epithelial cells donors. This new procedure can be rapidly tested and adopted by forensic laboratories worldwide as it uses material already commercially available. Moreover it can be easily automated with existing platform, and could therefore provide a mean to rapidly reduce existing backlogs.
Resumo:
In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.
Resumo:
Milk is an important source of bioactive compounds. Many of these compounds are released during fermentation and refrigerated storage. The aim of this study was to determine the release of peptides by lactic acid bacteria in commercial fermented milk during refrigerated storage. The size and profile of peptides were analyzed by polyacrylamide gel electrophoresis and sizeexclusion HPLC. During electrophoresis, it was observed that the peptides were released from caseins, whereas β-lactoglobulin was the whey protein with the highest degradation. HPLC analysis confirmed the pattern of peptide formation observed in electrophoresis. Two fractions lower than 2 kDa with aromatic amino acids in their structure were separated. These results were consistent with those reported for structures of peptides with antihypertensive activity. Therefore, the presence of aromatic amino acids in the peptide fractions obtained increases the likelihood of finding peptides with such activity in refrigerated commercial fermented milk. In conclusion, during cold storage, peptides with different molecular weights are released and accumulated. This could be due to the action of proteinases and peptidases of the proteolytic system in lactic acid bacteria.