898 resultados para Sensor data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Place identification refers to the process of analyzing sensor data in order to detect places, i.e., spatial areas that are linked with activities and associated with meanings. Place information can be used, e.g., to provide awareness cues in applications that support social interactions, to provide personalized and location-sensitive information to the user, and to support mobile user studies by providing cues about the situations the study participant has encountered. Regularities in human movement patterns make it possible to detect personally meaningful places by analyzing location traces of a user. This thesis focuses on providing system level support for place identification, as well as on algorithmic issues related to the place identification process. The move from location to place requires interactions between location sensing technologies (e.g., GPS or GSM positioning), algorithms that identify places from location data and applications and services that utilize place information. These interactions can be facilitated using a mobile platform, i.e., an application or framework that runs on a mobile phone. For the purposes of this thesis, mobile platforms automate data capture and processing and provide means for disseminating data to applications and other system components. The first contribution of the thesis is BeTelGeuse, a freely available, open source mobile platform that supports multiple runtime environments. The actual place identification process can be understood as a data analysis task where the goal is to analyze (location) measurements and to identify areas that are meaningful to the user. The second contribution of the thesis is the Dirichlet Process Clustering (DPCluster) algorithm, a novel place identification algorithm. The performance of the DPCluster algorithm is evaluated using twelve different datasets that have been collected by different users, at different locations and over different periods of time. As part of the evaluation we compare the DPCluster algorithm against other state-of-the-art place identification algorithms. The results indicate that the DPCluster algorithm provides improved generalization performance against spatial and temporal variations in location measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Wireless Sensor Network (WSN) powered using harvested energies is limited in its operation by instantaneous power. Since energy availability can be different across nodes in the network, network setup and collaboration is a non trivial task. At the same time, in the event of excess energy, exciting node collaboration possibilities exist; often not feasible with battery driven sensor networks. Operations such as sensing, computation, storage and communication are required to achieve the common goal for any sensor network. In this paper, we design and implement a smart application that uses a Decision Engine, and morphs itself into an energy matched application. The results are based on measurements using IRIS motes running on solar energy. We have done away with batteries; instead used low leakage super capacitors to store harvested energy. The Decision Engine utilizes two pieces of data to provide its recommendations. Firstly, a history based energy prediction model assists the engine with information about in-coming energy. The second input is the energy cost database for operations. The energy driven Decision Engine calculates the energy budgets and recommends the best possible set of operations. Under excess energy condition, the Decision Engine, promiscuously sniffs the neighborhood looking for all possible data from neighbors. This data includes neighbor's energy level and sensor data. Equipped with this data, nodes establish detailed data correlation and thus enhance collaboration such as filling up data gaps on behalf of nodes hibernating under low energy conditions. The results are encouraging. Node and network life time of the sensor nodes running the smart application is found to be significantly higher compared to the base application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification and mapping of crevasses in glaciated regions is important for safe movement. However, the remote and rugged glacial terrain in the Himalaya poses greater challenges for field data collection. In the present study crevasse signatures were collected from Siachen and Samudra Tapu glaciers in the Indian Himalaya using ground-penetrating radar (GPR). The surveys were conducted using the antennas of 250 MHz frequency in ground mode and 350 MHz in airborne mode. The identified signatures of open and hidden crevasses in GPR profiles collected in ground mode were validated by ground truthing. The crevasse zones and buried boulder areas in a glacier were identified using a combination of airborne GPR profiles and SAR data, and the same have been validated with the high-resolution optical satellite imagery (Cartosat-1) and Survey of India mapsheet. Using multi-sensor data, a crevasse map for Samudra Tapu glacier was prepared. The present methodology can also be used for mapping the crevasse zones in other glaciers in the Himalaya.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clock synchronization is highly desirable in distributed systems, including many applications in the Internet of Things and Humans. It improves the efficiency, modularity, and scalability of the system, and optimizes use of event triggers. For IoTH, BLE - a subset of the recent Bluetooth v4.0 stack - provides a low-power and loosely coupled mechanism for sensor data collection with ubiquitous units (e.g., smartphones and tablets) carried by humans. This fundamental design paradigm of BLE is enabled by a range of broadcast advertising modes. While its operational benefits are numerous, the lack of a common time reference in the broadcast mode of BLE has been a fundamental limitation. This article presents and describes CheepSync, a time synchronization service for BLE advertisers, especially tailored for applications requiring high time precision on resource constrained BLE platforms. Designed on top of the existing Bluetooth v4.0 standard, the CheepSync framework utilizes low-level time-stamping and comprehensive error compensation mechanisms for overcoming uncertainties in message transmission, clock drift, and other system-specific constraints. CheepSync was implemented on custom designed nRF24Cheep beacon platforms (as broadcasters) and commercial off-the-shelf Android ported smartphones (as passive listeners). We demonstrate the efficacy of CheepSync by numerous empirical evaluations in a variety of experimental setups, and show that its average (single-hop) time synchronization accuracy is in the 10 mu s range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A realização da Internet das Coisas (Internet of Things, IoT) requer a integração e interação de dispositivos e serviços com protocolos de comunicação heterogêneos. Os dados gerados pelos dispositivos precisam ser analisados e interpretados em concordância com um modelo de dados em comum, o que pode ser solucionado com o uso de tecnologias de modelagem semântica, processamento, raciocínio e persistência de dados. A computação ciente de contexto possui soluções para estes desafios com mecanismos que associam os dados de contexto com dados coletados pelos dispositivos. Entretanto, a IoT precisa ir além da computação ciente de contexto, sendo simultaneamente necessário soluções para aspectos de segurança, privacidade e escalabilidade. Para integração destas tecnologias é necessário o suporte de uma infraestrutura, que pode ser implementada como um middleware. No entanto, uma solução centralizada de integração de dispositivos heterogêneos pode afetar escalabilidade. Assim esta integração é delegada para agentes de software, que são responsáveis por integrar os dispositivos e serviços, encapsulando as especificidades das suas interfaces e protocolos de comunicação. Neste trabalho são explorados os aspectos de segurança, persistência e nomeação para agentes de recursos. Para este fim foi desenvolvido o ContQuest, um framework, que facilita a integração de novos recursos e o desenvolvimento de aplicações cientes de contexto para a IoT, através de uma arquitetura de serviços e um modelo de dados. O ContQuest inclui soluções consistentes para os aspectos de persistência, segurança e controle de acesso tanto para os serviços de middleware, como para os Agentes de Recursos, que encapsulam dispositivos e serviços, e aplicações-clientes. O ContQuest utiliza OWL para a modelagem dos recursos e inclui um mecanismo de geração de identificadores únicos universais nas ontologias. Um protótipo do ContQuest foi desenvolvido e validado com a integração de três Agentes de Recurso para dispositivos reais: um dispositivo Arduino, um leitor de RFID e uma rede de sensores. Foi também realizado um experimento para avaliação de desempenho dos componentes do sistema, em que se observou o impacto do mecanismo de segurança proposto no desempenho do protótipo. Os resultados da validação e do desempenho são satisfatórios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文提出一种基于多传感器融合的组合导航方法,能够在小型旋翼无人机上实现低成本、高精度导航定位.该方法通过建立导航系统的机械编排模型,设计了一个17状态的扩展卡尔曼滤波器(EKF).对加速计的零偏和陀螺仪的漂移进行在线估计,实时的补偿传感器的测量误差.从而对旋翼无人机的速度、位置、角速度和姿态等参数进行精确的估计.通过对实际飞行数据仿真实验,并对比参考的导航系统,证明该方法在飞机的全包线飞行下均能够解算出可靠的导航信息。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究全地形移动机器人在不平坦地形中轮-地几何接触角的实时估计问题.本文以带有被动柔顺机构的六轮全地形移动机器人为对象,抛弃轮-地接触点位于车轮支撑臂延长线上这一假设,通过定义轮-地几何接触角δ来反映轮-地接触点在轮缘上位置的变化和地形不平坦给机器人运动带来的影响,将机器人看成是一个串-并联多刚体系统,基于速度闭链理论建立考虑地形不平坦和车轮滑移的机器人运动学模型,并针对轮-地几何接触角δ难以直接测量的问题,提出一种基于模型的卡尔曼滤波实时估计方法.利用卡尔曼滤波对机器人内部传感器的测量值进行噪声处理,基于机器人整体运动学模型对各个轮-地几何接触角进行实时估计,物理实验数据的处理结果验证了本文方法的有效性,从而为机器人运动学的精确计算和高质量的导航控制奠定了基础.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文借助于数据溶合方法中的引导法构成的系统在移动式机器人定位中取得了令人满意的结果.本系统的特点是:用分布式黑板作为计算机构,使系统具有并行处理能力;把时间(时序)推理引入系统.在数据溶合中考虑了时间的重要作用.本文提出的溶合方法和结构原则上可用于其它相关的问题领域.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, beco1ne inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called parallel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of thmn. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network.