952 resultados para Self-Control, Technique, Accuracy, Segmented, Basketball
Resumo:
O uso de plantas inseticidas e de variedades pode ser forte aliado ao Manejo Integrado de Pragas (MIP), podendo reduzir o número de aplicações de inseticidas e minimizar seus efeitos ao homem e ao meio ambiente. em condições de campo, visando o controle de pragas tardias do tomateiro em duas cultivares de crescimento determinado, compararam-se as seguintes táticas de controle: a) Convencional - pulverizações com os produtos metamidofós, buprofezin, acefato, cipermetrina, abamectina, permetrina, teflubenzuron e lufenuron, aplicados em intervalos de três a seis dias; b) MIP - nível de ação de cada praga para aplicações de imidacloprid, triflumuron, lufenuron e abamectina; c) MIP - Azadirachta indica (nim) - nível de ação de cada praga para aplicações de óleo de nim (1,2% de azadiractina) a 0,5%. As táticas de controle MIP e MIP - nim foram eficientes no controle das pragas tardias do tomateiro, quando a pressão da população é baixa, não diferindo do tratamento convencional que apresentou as menores médias de infestação. As táticas de controle convencional, MIP e MIP-nim promoveram maiores produções do tomateiro, com incrementos de até 74%. O número de pulverizações foi reduzido em até 77% com as táticas MIP e MIP - nim, comparado ao método convencional. O produto nim pode ser alternativa promissora no controle de pragas tardias do tomateiro em campo, que se ajusta ao MIP.
Resumo:
The Hazard Analysis and Critical Control Point (HACCP) is a preventive system that intends to guarantee the safety and harmlessness of food. It improves the quality of products as it eliminates possible defects during the process, and saves costs by practically eliminating final product inspection. This work describes the typical hazards encountered on the mushroom processing line for fresh consumption. Throughout the process, only the reception stage of mushrooms has been considered a critical control point (CCP). The main hazards at this stage were: the presence of unauthorised phytosanitary products; larger doses of such products than those permitted; the presence of pathogenic bacteria or thermo-stable enterotoxins. Putting into practice such knowledge would provide any industry that processes mushrooms for fresh consumption with a self-control HACCP-based system for its own productions.
Variable-Structure Control Design of Switched Systems With an Application to a DC-DC Power Converter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the analysis, design, simulation, and experimental results for a high frequency high Power-Factor (PF) AC (Alternate Current) voltage regulator, using a Sepic converter as power stage. The control technique employed to impose a sinusoidal input current waveform, with low Total Harmonic Distortion (THD), is the sinusoidal variable hysteresis control. The control technique was implemented in a FPGA (Field Programmable Gate Array) device, using a Hardware Description Language (VHDL). Through the use of the proposed control technique, the AC voltage regulator performs active power-factor correction, and low THD in the input current, for linear and non-linear loads, satisfying the requirements of the EEC61000-3-2 standards. Experimental results from an example prototype, designed for 300W of nominal output power, 50kHz (switching frequency), and 127Vrms of nominal input and output voltages, are presented in order to validate the proposed AC regulator. © 2005 IEEE.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a non-trivial dc-dc power converter and a simple and inexpensive control circuit design, that was simulated using the software PSpice, is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently proposed alternative sliding-mode control technique. © 2011 IFAC.
Resumo:
This work proposes a new three-phase multipulse rectifier based on the delta autotransformer connection with DC-DC Boost stages and constant hysteresis control which has the objective of providing a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents 0.99 power factor, 6% harmonic distortions in the currents from the mains and enhanced magnetic core utilization, which results in low weight and volume for the overall converter. The proposed control technique uses the simple constant hysteresis concept, thus leading to a low-cost but effective and reliable strategy. © 2011 IEEE.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application. © 2013 Elsevier Ltd.
Resumo:
Neste trabalho serão apresentados os resultados da avaliação experimental de uma metodologia de controle digital preditivo auto-ajustavel aplicada ao controle de tensão de um sistema de geração de energia de escala reduzida. Um estimador recursivo baseado no conhecido método de mínimos quadrados é utilizado na etapa de identificação do controlador preditivo proposto. A etapa de cálculo da lei de controle é realizada com o algoritmo Generalized Predictive Controller (GPC). A avaliação experimental foi realizada com testes de resposta ao degrau e rastreamento aplicados em diferentes condições operacionais do sistema de potência estudado. Para fins de comparação, também serão apresentados os resultados da avaliação de um controlador auto-ajustável que utiliza o método de alocação de pólos para a síntese do sinal de controle e três controladores digitais com parâmetros fixos.