943 resultados para Second-order conditions
Resumo:
This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC
Resumo:
We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.
Relative Predicativity and dependent recursion in second-order set theory and higher-orders theories
Resumo:
This article reports that some robustness of the notions of predicativity and of autonomous progression is broken down if as the given infinite total entity we choose some mathematical entities other than the traditional ω. Namely, the equivalence between normal transfinite recursion scheme and new dependent transfinite recursion scheme, which does hold in the context of subsystems of second order number theory, does not hold in the context of subsystems of second order set theory where the universe V of sets is treated as the given totality (nor in the contexts of those of n+3-th order number or set theories, where the class of all n+2-th order objects is treated as the given totality).
Resumo:
The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.
Resumo:
Let p: E —» JV be an arbitrary fibred manifold over a connected n-dimensional manifold N oriented by a volume form v = dx1^-...^dxn, and let pk: JkE → N be the bundle of K-jets of local sections of p, with projections Plk : JkE → JlE for every k ≥ 1
Resumo:
We introduce a second order in time modified Lagrange--Galerkin (MLG) method for the time dependent incompressible Navier--Stokes equations. The main ingredient of the new method is the scheme proposed to calculate in a more efficient manner the Galerkin projection of the functions transported along the characteristic curves of the transport operator. We present error estimates for velocity and pressure in the framework of mixed finite elements when either the mini-element or the $P2/P1$ Taylor--Hood element are used.
Resumo:
Involutivity of the Hamilton-Cartan equations of a second-order Lagrangian admitting a first-order Hamiltonian formalism
Resumo:
The main focus of this paper is on hydrodynamic modelling of a semisubmersible platform (which can support a 1.5MW wind turbine and is composed by three buoyant columns connected by bracings) with especial emphasis on the estimation of the wave drift components and their effects on the design of the mooring system. Indeed, with natural periods of drift around 60 seconds, accurate computation of the low-frequency second-order components is not a straightforward task. As methods usually adopted when dealing with the slow-drifts of deep-water moored systems, such as Newman?s approximation, have their errors increased by the relatively low resonant periods, and as the effects of depth cannot be ignored, the wave diffraction analysis must be based on full Quadratic Transfer Functions (QTF) computations. A discussion on the numerical aspects of performing such computations is presented, making use of the second-order module available with the seakeeping software WAMIT®. Finally, the paper also provides a preliminary verification of the accuracy of the numerical predictions based on the results obtained in a series of model tests with the structure fixed in bichromatic waves.
Resumo:
A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.