820 resultados para Search-based algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Analyses of brain responses to external stimuli are typically based on the means computed across conditions. However in many cognitive and clinical applications, taking into account their variability across trials has turned out to be statistically more sensitive than comparing their means. NEW METHOD: In this study we present a novel implementation of a single-trial topographic analysis (STTA) for discriminating auditory evoked potentials at predefined time-windows. This analysis has been previously introduced for extracting spatio-temporal features at the level of the whole neural response. Adapting the STTA on specific time windows is an essential step for comparing its performance to other time-window based algorithms. RESULTS: We analyzed responses to standard vs. deviant sounds and showed that the new implementation of the STTA gives above-chance decoding results in all subjects (in comparison to 7 out of 11 with the original method). In comatose patients, the improvement of the decoding performance was even more pronounced than in healthy controls and doubled the number of significant results. COMPARISON WITH EXISTING METHOD(S): We compared the results obtained with the new STTA to those based on a logistic regression in healthy controls and patients. We showed that the first of these two comparisons provided a better performance of the logistic regression; however only the new STTA provided significant results in comatose patients at group level. CONCLUSIONS: Our results provide quantitative evidence that a systematic investigation of the accuracy of established methods in normal and clinical population is an essential step for optimizing decoding performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Care for patients with colon and rectal cancer has improved in the last twenty years however still considerable variation exists in cancer management and outcome between European countries. Therefore, EURECCA, which is the acronym of European Registration of cancer care, is aiming at defining core treatment strategies and developing a European audit structure in order to improve the quality of care for all patients with colon and rectal cancer. In December 2012 the first multidisciplinary consensus conference about colon and rectum was held looking for multidisciplinary consensus. The expert panel consisted of representatives of European scientific organisations involved in cancer care of patients with colon and rectal cancer and representatives of national colorectal registries. Methods: The expert panel had delegates of the European Society of Surgical Oncology (ESSO), European Society for Radiotherapy & Oncology (ESTRO), European Society of Pathology (ESP), European Society for Medical Oncology (ESMO), European Society of Radiology (ESR), European Society of Coloproctology (ESCP), European CanCer Organisation (ECCO), European Oncology Nursing Society (EONS) and the European Colorectal Cancer Patient Organisation (EuropaColon), as well as delegates from national registries or audits. Experts commented and voted on the two web-based online voting rounds before the meeting (between 4th and 25th October and between the 20th November and 3rd December 2012) as well as one online round after the meeting (4th-20th March 2013) and were invited to lecture on the subjects during the meeting (13th-15th December 2012). The sentences in the consensus document were available during the meeting and a televoting round during the conference by all participants was performed. All sentences that were voted on are available on the EURECCA website www.canceraudit.eu. The consensus document was divided in sections describing evidence based algorithms of diagnostics, pathology, surgery, medical oncology, radiotherapy, and follow-up where applicable for treatment of colon cancer, rectal cancer and stage IV separately. Consensus was achieved using the Delphi method. Results: The total number of the voted sentences was 465. All chapters were voted on by at least 75% of the experts. Of the 465 sentences, 84% achieved large consensus, 6% achieved moderate consensus, and 7% resulted in minimum consensus. Only 3% was disagreed by more than 50% of the members. Conclusions: It is feasible to achieve European Consensus on key diagnostic and treatment issues using the Delphi method. This consensus embodies the expertise of professionals from all disciplines involved in the care for patients with colon and rectal cancer. Diagnostic and treatment algorithms were developed to implement the current evidence and to define core treatment guidance for multidisciplinary team management of colon and rectal cancer throughout Europe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While red-green-blue (RGB) image of retina has quite limited information, retinal multispectral images provide both spatial and spectral information which could enhance the capability of exploring the eye-related problems in their early stages. In this thesis, two learning-based algorithms for reconstructing of spectral retinal images from the RGB images are developed by a two-step manner. First, related previous techniques are reviewed and studied. Then, the most suitable methods are enhanced and combined to have new algorithms for the reconstruction of spectral retinal images. The proposed approaches are based on radial basis function network to learn a mapping from tristimulus colour space to multi-spectral space. The resemblance level of reproduced spectral images and original images is estimated using spectral distance metrics spectral angle mapper, spectral correlation mapper, and spectral information divergence, which show a promising result from the suggested algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La réadaptation pulmonaire est une intervention dont l’efficacité est largement reconnue. Cette efficacité a été établie grâce à l’utilisation d’instruments de mesure d’impact global. Les patients bénéficiant des programmes de réadaptation pulmonaire possèdent des caractéristiques variées et souffrent généralement de maladie pulmonaire obstructive chronique à différents degrés. En fonction de leurs différents besoins, les patients répondent de façon variable aux composantes d’un programme de réadaptation pulmonaire. Il est recommandé d’individualiser les programmes en fonction des besoins des patients afin d’en optimiser les effets. À cette fin, l’évaluation des besoins de réadaptation des patients est nécessaire. Comme il n’existe actuellement aucun instrument standardisé pour procéder à cette évaluation, nous avons entrepris d’en développer un à l’aide de méthodes qualitatives et quantitatives de recherche. Un modèle conceptuel d’évaluation des besoins de réadaptation des patients a été élaboré suite aux résultats tirés de groupes de discussion, de la consultation de dossiers médicaux et d’une recension des écrits. À partir de ce modèle, des items devant être sélectionnés de façon individualisée parmi cinq domaines (reconnaissance des besoins, connaissance, motivation, attentes et buts) ont été pré-testés. Les tendances générales concernant la validité des items contenus dans le prototype d’instrument ont été vérifiées lors d’une étude pilote auprès de 50 répondants en réadaptation. Les pistes d’investigation dégagées dans ce mémoire serviront aux études de validation plus approfondies dont devrait faire l’objet ce prototype d’instrument dans le futur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La transformation de modèles consiste à transformer un modèle source en un modèle cible conformément à des méta-modèles source et cible. Nous distinguons deux types de transformations. La première est exogène où les méta-modèles source et cible représentent des formalismes différents et où tous les éléments du modèle source sont transformés. Quand elle concerne un même formalisme, la transformation est endogène. Ce type de transformation nécessite généralement deux étapes : l’identification des éléments du modèle source à transformer, puis la transformation de ces éléments. Dans le cadre de cette thèse, nous proposons trois principales contributions liées à ces problèmes de transformation. La première contribution est l’automatisation des transformations des modèles. Nous proposons de considérer le problème de transformation comme un problème d'optimisation combinatoire où un modèle cible peut être automatiquement généré à partir d'un nombre réduit d'exemples de transformations. Cette première contribution peut être appliquée aux transformations exogènes ou endogènes (après la détection des éléments à transformer). La deuxième contribution est liée à la transformation endogène où les éléments à transformer du modèle source doivent être détectés. Nous proposons une approche pour la détection des défauts de conception comme étape préalable au refactoring. Cette approche est inspirée du principe de la détection des virus par le système immunitaire humain, appelée sélection négative. L’idée consiste à utiliser de bonnes pratiques d’implémentation pour détecter les parties du code à risque. La troisième contribution vise à tester un mécanisme de transformation en utilisant une fonction oracle pour détecter les erreurs. Nous avons adapté le mécanisme de sélection négative qui consiste à considérer comme une erreur toute déviation entre les traces de transformation à évaluer et une base d’exemples contenant des traces de transformation de bonne qualité. La fonction oracle calcule cette dissimilarité et les erreurs sont ordonnées selon ce score. Les différentes contributions ont été évaluées sur d’importants projets et les résultats obtenus montrent leurs efficacités.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse a pour but d’améliorer l’automatisation dans l’ingénierie dirigée par les modèles (MDE pour Model Driven Engineering). MDE est un paradigme qui promet de réduire la complexité du logiciel par l’utilisation intensive de modèles et des transformations automatiques entre modèles (TM). D’une façon simplifiée, dans la vision du MDE, les spécialistes utilisent plusieurs modèles pour représenter un logiciel, et ils produisent le code source en transformant automatiquement ces modèles. Conséquemment, l’automatisation est un facteur clé et un principe fondateur de MDE. En plus des TM, d’autres activités ont besoin d’automatisation, e.g. la définition des langages de modélisation et la migration de logiciels. Dans ce contexte, la contribution principale de cette thèse est de proposer une approche générale pour améliorer l’automatisation du MDE. Notre approche est basée sur la recherche méta-heuristique guidée par les exemples. Nous appliquons cette approche sur deux problèmes importants de MDE, (1) la transformation des modèles et (2) la définition précise de langages de modélisation. Pour le premier problème, nous distinguons entre la transformation dans le contexte de la migration et les transformations générales entre modèles. Dans le cas de la migration, nous proposons une méthode de regroupement logiciel (Software Clustering) basée sur une méta-heuristique guidée par des exemples de regroupement. De la même façon, pour les transformations générales, nous apprenons des transformations entre modèles en utilisant un algorithme de programmation génétique qui s’inspire des exemples des transformations passées. Pour la définition précise de langages de modélisation, nous proposons une méthode basée sur une recherche méta-heuristique, qui dérive des règles de bonne formation pour les méta-modèles, avec l’objectif de bien discriminer entre modèles valides et invalides. Les études empiriques que nous avons menées, montrent que les approches proposées obtiennent des bons résultats tant quantitatifs que qualitatifs. Ceux-ci nous permettent de conclure que l’amélioration de l’automatisation du MDE en utilisant des méthodes de recherche méta-heuristique et des exemples peut contribuer à l’adoption plus large de MDE dans l’industrie à là venir.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à améliorer la structure d'un programme tout en préservant son comportement externe. Le refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification, conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2) l'identification des solutions de refactoring à appliquer. Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans des exemples de défauts de conception. Nous utilisons un algorithme génétique pour générer automatiquement des règles de détection à partir des exemples de défauts. Pour la deuxième étape, nous introduisons une approche se basant sur une recherche heuristique. Le processus consiste à trouver la séquence optimale d'opérations de refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi, réduire le nombre de changements permets de garder autant que possible avec la conception initiale. La préservation de la sémantique assure que le programme restructuré est sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer de nouveaux refactorings dans des contextes similaires. En outre, nous introduisons une approche multi-objective pour améliorer les attributs de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises » pratiques de conception (défauts de conception), tout en introduisant les « bonnes » pratiques de conception (patrons de conception).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’ingénierie dirigée par les modèles (IDM) est un paradigme d’ingénierie du logiciel bien établi, qui préconise l’utilisation de modèles comme artéfacts de premier ordre dans les activités de développement et de maintenance du logiciel. La manipulation de plusieurs modèles durant le cycle de vie du logiciel motive l’usage de transformations de modèles (TM) afin d’automatiser les opérations de génération et de mise à jour des modèles lorsque cela est possible. L’écriture de transformations de modèles demeure cependant une tâche ardue, qui requiert à la fois beaucoup de connaissances et d’efforts, remettant ainsi en question les avantages apportés par l’IDM. Afin de faire face à cette problématique, de nombreux travaux de recherche se sont intéressés à l’automatisation des TM. L’apprentissage de transformations de modèles par l’exemple (TMPE) constitue, à cet égard, une approche prometteuse. La TMPE a pour objectif d’apprendre des programmes de transformation de modèles à partir d’un ensemble de paires de modèles sources et cibles fournis en guise d’exemples. Dans ce travail, nous proposons un processus d’apprentissage de transformations de modèles par l’exemple. Ce dernier vise à apprendre des transformations de modèles complexes en s’attaquant à trois exigences constatées, à savoir, l’exploration du contexte dans le modèle source, la vérification de valeurs d’attributs sources et la dérivation d’attributs cibles complexes. Nous validons notre approche de manière expérimentale sur 7 cas de transformations de modèles. Trois des sept transformations apprises permettent d’obtenir des modèles cibles parfaits. De plus, une précision et un rappel supérieurs à 90% sont enregistrés au niveau des modèles cibles obtenus par les quatre transformations restantes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les logiciels sont de plus en plus complexes et leur développement est souvent fait par des équipes dispersées et changeantes. Par ailleurs, de nos jours, la majorité des logiciels sont recyclés au lieu d’être développés à partir de zéro. La tâche de compréhension, inhérente aux tâches de maintenance, consiste à analyser plusieurs dimensions du logiciel en parallèle. La dimension temps intervient à deux niveaux dans le logiciel : il change durant son évolution et durant son exécution. Ces changements prennent un sens particulier quand ils sont analysés avec d’autres dimensions du logiciel. L’analyse de données multidimensionnelles est un problème difficile à résoudre. Cependant, certaines méthodes permettent de contourner cette difficulté. Ainsi, les approches semi-automatiques, comme la visualisation du logiciel, permettent à l’usager d’intervenir durant l’analyse pour explorer et guider la recherche d’informations. Dans une première étape de la thèse, nous appliquons des techniques de visualisation pour mieux comprendre la dynamique des logiciels pendant l’évolution et l’exécution. Les changements dans le temps sont représentés par des heat maps. Ainsi, nous utilisons la même représentation graphique pour visualiser les changements pendant l’évolution et ceux pendant l’exécution. Une autre catégorie d’approches, qui permettent de comprendre certains aspects dynamiques du logiciel, concerne l’utilisation d’heuristiques. Dans une seconde étape de la thèse, nous nous intéressons à l’identification des phases pendant l’évolution ou pendant l’exécution en utilisant la même approche. Dans ce contexte, la prémisse est qu’il existe une cohérence inhérente dans les évènements, qui permet d’isoler des sous-ensembles comme des phases. Cette hypothèse de cohérence est ensuite définie spécifiquement pour les évènements de changements de code (évolution) ou de changements d’état (exécution). L’objectif de la thèse est d’étudier l’unification de ces deux dimensions du temps que sont l’évolution et l’exécution. Ceci s’inscrit dans notre volonté de rapprocher les deux domaines de recherche qui s’intéressent à une même catégorie de problèmes, mais selon deux perspectives différentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach is presented to identify the number of incoming signals in antenna array processing. The new method exploits the inherent properties existing in the noise eigenvalues of the covariance matrix of the array output. A single threshold has been established concerning information about the signal and noise strength, data length, and array size. When the subspace-based algorithms are adopted the computation cost of the signal number detector can almost be neglected. The performance of the threshold is robust against low SNR and short data length.