928 resultados para Scaling laws


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that the adsorption and morphological properties of layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS) are affected dramatically by different treatments of the POMA solutions employed to prepare the films. Whereas the dimension of the globular structures seen by atomic force microscopy increases non monotonically during film growth in parent POMA solution, owing to a competition of adsorption/desorption processes, it changes monotonically for the fractionated POMA. The roughness of the latter films depends on the concentration of the solution and saturates at a given size of the scan window. This allowed us to apply scaling laws that indicated a self-affine mechanism for adsorption of the treated POMA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682464]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate -entering the phenomenological Paris law-and the microscopic damage accumulation exponent, gamma, under the influence of disorder. The way the jumps of the growing crack, Delta a, and the waiting time between successive breaks, Delta t, depend on the type of material, via gamma, are also investigated. We find that the averages of these quantities, <Delta a > and <Delta t >/< t(r)>, scale as power laws of the crack length a, <Delta a > proportional to a(alpha) and <Delta t >/< t(r)> proportional to a(-beta), where < t(r)> is the average rupture time. Strikingly, our results show, for small values of gamma, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of gamma = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation. Copyright (C) EPLA, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden experimentelle und theoretische Untersuchungen zum Phasen- und Grenzflächenverhalten von ternären Systemen des Typs Lösungsmittel/Fällungsmittel/Polymer durchgeführt. Diese Art der Mischungen ist vor allem für die Planung und Durchführung der Membranherstellung von Bedeutung, bei der die genaue Kenntnis des Phasendiagramms und der Grenzflächenspannung unabdingbar ist. Als Polymere dienten Polystyrol sowie Polydimethylsiloxan. Im Fall des Polystyrols kam Butanon-2 als Lösungsmittel zum Einsatz, wobei drei niedrigmolekulare lineare Alkohole als Fällungsmittel verwendet wurden. Für Polydimethylsiloxan eignen sich Toluol als Lösungsmittel und Ethanol als Fällungsmittel. Durch Lichtstreumessungen, Dampfdruckbestimmungen mittels Headspace-Gaschromatographie (VLE-Gleichgewichte) sowie Quellungsgleichgewichten lassen sich die thermodynamischen Eigenschaften der binären Subsysteme charakterisieren. Auf Grundlage der Flory-Huggins-Theorie kann das experimentell bestimmte Phasenverhalten (LLE-Gleichgewichte) in guter Übereinstimmung nach der Methode der Direktminimierung der Gibbs'schen Energie modelliert werden. Zieht man die Ergebnisse der Aktivitätsbestimmung von Dreikomponenten-Mischungen mit in Betracht, so ergeben sich systematische Abweichungen zwischen Experiment und Theorie. Sie können auf die Notwendigkeit ternärer Wechselwirkungsparameter zurückgeführt werden, die ebenfalls durch Modellierung zugänglich sind.Durch die aus den VLE- und LLE-Untersuchungen gewonnenen Ergebnissen kann die sog. Hump-Energie berechnet werden, die ein Maß für die Entmischungstendenz darstellt. Diese Größe eignet sich gut zur Beschreibung von Grenzflächenphänomenen mittels Skalengesetzen. Die für binäre Systeme gefundenen theoretisch fundierten Skalenparameter gelten jedoch nur teilweise. Ein neues Skalengesetz lässt erstmals eine Beschreibung über die gesamte Mischungslücke zu, wobei ein Parameter durch eine gemessene Grenzflächenspannung (zwischen Fällungsmittel/Polymer) ersetzt werden kann.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Änderungen in der Architektur von Polymeren abweichend von einer linearen Kette, beeinflussen deren physikalisch-chemisches Verhalten. Eine mögliche Architektur der verzweigten Moleküle stellen sternförmige Polymere dar. An einem zentralen Molekül als Kern, beispielsweise einem Dendrimer, sind an dessen Endpunkte lineare Polymerketten kovalent gebunden. In dieser Arbeit wurden zwei Problemstellungen behandelt. Zunächst wurde das Verhalten von Sternpolymeren aus Polybutadien in einer Matrix aus linearem Polybutadien mittels Neutronenkleinwinkelstreuung untersucht. Die Molekulargewichte der linaren Ketten wurden so gewählt, daî eines ein kleineres und das zweite ein größeres Molekulargewicht hat, als der leichteste bzw. schwerste Arm der verwendeten Sternpolymere. Neben den Parametern Armanzahl und -gewicht wurde die Konzentrations- und Temperaturabhängig durchgeführt. Die aus diesen Messungen extrahierten Parameter wurden mit den theoretischen Vorhersagen bezüglich des Skalenverhaltens vonSternpolymeren in derartigen Mischungen verglichen. Weiterhin wurde ein Interaktionsparameter bestimmt und in einzelne Anteile verschiedener Arten der Wechselwirkungen zerlegt. Die zweite Fragestellung betraf das Adsorptionsverhalten von Sternpolymeren im Vergleich mit linearen Polymeren. Es wurde die Kinetik der Adsorption mittels Ellipsometrie, die Strukturbildung mit dem Rasterkraftmikroskop und Streuung unter streifendem Einfalluntersucht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed Monte Carlo and molecular dynamics simulations of suspensions of monodisperse, hard ellipsoids of revolution. Hard-particle models play a key role in statistical mechanics. They are conceptually and computationally simple, and they offer insight into systems in which particle shape is important, including atomic, molecular, colloidal, and granular systems. In the high density phase diagram of prolate hard ellipsoids we have found a new crystal, which is more stable than the stretched FCC structure proposed previously . The new phase, SM2, has a simple monoclinic unit cell containing a basis of two ellipsoids with unequal orientations. The angle of inclination is very soft for length-to-width (aspect) ratio l/w=3, while the other angles are not. A symmetric state of the unit cell exists, related to the densest-known packings of ellipsoids; it is not always the stable one. Our results remove the stretched FCC structure for aspect ratio l/w=3 from the phase diagram of hard, uni-axial ellipsoids. We provide evidence that this holds between aspect ratios 3 and 6, and possibly beyond. Finally, ellipsoids in SM2 at l/w=1.55 exhibit end-over-end flipping, warranting studies of the cross-over to where this dynamics is not possible. Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilibrium, they show a first-order transition from an isotropic phase to a rotator phase, where positions are crystalline but orientations are free. When over-compressing the isotropic phase into the rotator regime, we observed super-Arrhenius slowing down of diffusion and relaxation, and signatures of the cage effect. These features of glassy dynamics are sufficiently strong that asymptotic scaling laws of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and were found to apply. We found strong coupling of positional and orientational degrees of freedom, leading to a common value for the MCT glass-transition volume fraction. Flipping modes were not slowed down significantly. We demonstrated that the results are independent of simulation method, as predicted by MCT. Further, we determined that even intra-cage motion is cooperative. We confirmed the presence of dynamical heterogeneities associated with the cage effect. The transit between cages was seen to occur on short time scales, compared to the time spent in cages; but the transit was shown not to involve displacements distinguishable in character from intra-cage motion. The presence of glassy dynamics was predicted by molecular MCT (MMCT). However, as MMCT disregards crystallization, a test by simulation was required. Glassy dynamics is unusual in monodisperse systems. Crystallization typically intervenes unless polydispersity, network-forming bonds or other asymmetries are introduced. We argue that particle anisometry acts as a sufficient source of disorder to prevent crystallization. This sheds new light on the question of which ingredients are required for glass formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the View the MathML source3d94d1(J=0)→3d94p1(J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at View the MathML sourceλ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω2ω pumping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold (27, as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q(D)*:, which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger (Q(D)*; is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales less than or similar to 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (less than or similar to 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.