965 resultados para SWISS 3T3 FIBROBLASTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of tissue-engineered constructs for skeletal regeneration of large critical-sized defects requires the identification of a sustained mineralizing cell source and careful optimization of scaffold architecture and surface properties. We have recently reported that Runx2-genetically engineered primary dermal fibroblasts express a mineralizing phenotype in monolayer culture, highlighting their potential as an autologous osteoblastic cell source which can be easily obtained in large quantities. The objective of the present study was to evaluate the osteogenic potential of Runx2-expressing fibroblasts when cultured in vitro on three commercially available scaffolds with divergent properties: fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-co-glycolide (PLGA), and fibrous collagen disks. We demonstrate that the mineralization capacity of Runx2-engineered fibroblasts is scaffold dependent, with collagen foams exhibiting ten-fold higher mineral volume compared to PCL and PLGA matrices. Constructs were differentially colonized by genetically modified fibroblasts, but scaffold-directed changes in DNA content did not correlate with trends in mineral deposition. Sustained expression of Runx2 upregulated osteoblastic gene expression relative to unmodified control cells, and the magnitude of this expression was modulated by scaffold properties. Histological analyses revealed that matrix mineralization co-localized with cellular distribution, which was confined to the periphery of fibrous collagen and PLGA sponges and around the circumference of PCL microfilaments. Finally, FTIR spectroscopy verified that mineral deposits within all Runx2-engineered scaffolds displayed the chemical signature characteristic of carbonate-containing, poorly crystalline hydroxyapatite. These results highlight the important effect of scaffold properties on the capacity of Runx2-expressing primary dermal fibroblasts to differentiate into a mineralizing osteoblastic phenotype for bone tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ideal dermal matrix should be able to provide the right biological and physical environment to ensure homogenous cell and extracellular matrix (ECM) distribution, as well as the right size and morphology of the neo-tissue required. Four natural and synthetic 3D matrices were evaluated in vitro as dermal matrices, namely (1) equine collagen foam, TissuFleece®, (2) acellular dermal replacement, Alloderm®, (3) knitted poly(lactic-co-glycolic acid) (10:90)–poly(-caprolactone) (PLGA–PCL) mesh, (4) chitosan scaffold. Human dermal fibroblasts were cultured on the specimens over 3 weeks. Cell morphology, distribution and viability were assessed by electron microscopy, histology and confocal laser microscopy. Metabolic activity and DNA synthesis were analysed via MTS metabolic assay and [3H]-thymidine uptake, while ECM protein expression was determined by immunohistochemistry. TissuFleece®, Alloderm® and PLGA–PCL mesh supported cell attachment, proliferation and neo-tissue formation. However, TissuFleece® contracted to 10% of the original size while Alloderm® supported cell proliferation predominantly on the surface of the material. PLGA–PCL mesh promoted more homogenous cell distribution and tissue formation. Chitosan scaffolds did not support cell attachment and proliferation. These results demonstrated that physical characteristics including porosity and mechanical stability to withstand cell contraction forces are important in determining the success of a dermal matrix material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Prevention and control of ovine enzootic abortion (OEA) can be achieved by application of a live vaccine. In this study, five sheep flocks with different vaccination and infection status were serologically tested using a competitive enzyme-linked immunosorbent assay (cELISA) specific for Chlamydophila (Cp.) abortus over a two-year time period. Results Sheep in Flock A with recent OEA history had high antibody values after vaccination similar to Flock C with natural Cp. abortus infections. In contrast, OEA serology negative sheep (Flock E) showed individual animal-specific immunoreactions after vaccination. Antibody levels of vaccinated ewes in Flock B ranged from negative to positive two and three years after vaccination, respectively. Positive antibody values in the negative control Flock D (without OEA or vaccination) are probably due to asymptomatic intestinal infections with Cp. abortus. Excretion of the attenuated strain of Cp. abortus used in the live vaccine through the eye was not observed in vaccinated animals of Flock E. Conclusion The findings of our study indicate that, using serology, no distinction can be made between vaccinated and naturally infected sheep. As a result, confirmation of a negative OEA status in vaccinated animals by serology cannot be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crosstalk between fibroblasts and keratinocytes is a vital component of the wound healing process, and involves the activity of a number of growth factors and cytokines. In this work, we develop a mathematical model of this crosstalk in order to elucidate the effects of these interactions on the regeneration of collagen in a wound that heals by second intention. We consider the role of four components that strongly affect this process: transforming growth factor-beta, platelet-derived growth factor, interleukin-1 and keratinocyte growth factor. The impact of this network of interactions on the degradation of an initial fibrin clot, as well as its subsequent replacement by a matrix that is mainly comprised of collagen, is described through an eight-component system of nonlinear partial differential equations. Numerical results, obtained in a two-dimensional domain, highlight key aspects of this multifarious process such as reepithelialisation. The model is shown to reproduce many of the important features of normal wound healing. In addition, we use the model to simulate the treatment of two pathological cases: chronic hypoxia, which can lead to chronic wounds; and prolonged inflammation, which has been shown to lead to hypertrophic scarring. We find that our model predictions are qualitatively in agreement with previously reported observations, and provide an alternative pathway for gaining insight into this complex biological process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of well-defined poly(dimethylsiloxane)-poly(ethylene glycol) (PDMS-PEG) ABA linear block co-oligomers on the proliferation of human dermal fibroblasts. The co-oligomers assessed ranged in molecular weight (MW) from 1335 to 5208 Da and hydrophilic-lipophilic balance (HLB) from 5.9 to 16.6 by varying the number of both PDMS and PEG units. In general, it was found that co-oligomers of low MW or intermediate hydrophilicity significantly reduced fibroblast proliferation. A linear relationship between down-regulation of fibroblast proliferation, and the ratio HLB/MW was observed at concentrations of 0.1 and 1.0 wt % of the oligomers. This enabled the structures with highest efficiency to be determined. These results suggest the possible use of the PEG-PDMS-PEG block co-oligomers as an alternative to silicone gels for hypertrophic scar remediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of individual ocular tissues in mediating changes to the sclera during myopia development is unclear. The aim of this study was to examine the effects of retina, RPE and choroidal tissues from myopic and hyperopic chick eyes on the DNA and glycosaminoglycan (GAG) content in cultures of chick scleral fibroblasts. Primary cultures of fibroblastic cells expressing vimentin and -smooth muscle actin were established in serum-supplemented growth medium from 8-day-old normal chick sclera. The fibroblasts were subsequently co-cultured with posterior eye cup tissue (full thickness containing retina, RPE and choroid) obtained from untreated eyes and eyes wearing translucent diffusers (form-deprivation myopia, FDM) or -15D lenses (lens-induced myopia, LIM) for 3 days (post hatch day 5 to 8) (n=6 per treatment group). The effect of tissues (full thickness and individual retina, RPE, and choroid layers) from -15D (LIM) versus +15D (lens-induced hyperopia, LIH) treated eyes was also determined. Refraction changes in the direction predicted by the visual treatments were confirmed by retinoscopy prior to tissue collection. Glycosaminoglycan (GAG) and DNA content of the scleral fibroblast cultures were measured using GAG and PicoGreen assays. There was no significant difference in the effect of full thickness tissue from either FDM or LIM treated eyes on DNA and GAG content of scleral fibroblasts (DNA 8.9±2.6 µg and 8.4±1.1 µg, p=0.12; GAG 11.2±0.6 µg and 10.1±1.0 µg, p=0.34). Retina from LIM eyes did not alter fibroblast DNA or GAG content compared to retina from LIH eyes (DNA 27.2±1.7 µg versus 23.2±1.5 µg, p=0.21; GAG 28.1±1.7 µg versus. 28.7±1.2 µg, p=0.46). Similarly, the choroid from LIH and LIM eyes did not produce a differential effect on DNA content (DNA, LIM 46.9±6.4 versus LIH 51.5±4.7 µg, p=0.31), whereas GAG content was higher for cells in co-culture with choroid from LIH eyes (GAG 32.5±0.7 µg versus 18.9±1.2 µg, F1,6=9.210, p=0.0002). In contrast, fibroblast DNA was greater in co-culture with RPE from LIM eyes than the empty basket and DNA content less for co-culture with RPE from LIH eyes (LIM: 72.4±6.3 µg versus Empty basket: 46.03±1.0 µg; F1,6=69.99, p=0.0005 and LIH: 27.9±2.3 µg versus empty basket: 46.03±1.0 µg; p=0.0004). GAG content was higher with RPE from LIH eyes (LIH: 33.7±1.9 µg versus empty basket: 29.5±0.8 µg, F1,6=13.99, p=0.010) and lower with RPE from LIM eyes (LIM: 27.7±0.9 µg versus empty basket: 29.5±0.8 µg, p=0.021). GAG content of cells in co-culture with choroid from LIH eyes was higher compared to co-culture with choroid from LIM eyes (32.5±0.7 µg versus 18.9±1.2 µg respectively, F1,6=9.210, p=0.0002). In conclusion, these experiments provide evidence for a directional growth signal that is present (and remains) in the ex-vivo RPE, but that does not remain in the ex-vivo retina. The identity of this factor(s) that can modify scleral cell DNA and GAG content requires further research.