989 resultados para SU(3) symmetry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by recent experimental observation of spin-orbit coupling in carbon nanotube quantum dots [F. Kuemmeth , Nature (London) 452, 448 (2008)], we investigate in detail its influence on the Kondo effect. The spin-orbit coupling intrinsically lifts out the fourfold degeneracy of a single electron in the dot, thereby breaking the SU(4) symmetry and splitting the Kondo resonance even at zero magnetic field. When the field is applied, the Kondo resonance further splits and exhibits fine multipeak structures resulting from the interplay of spin-orbit coupling and the Zeeman effect. A microscopic cotunneling process for each peak can be uniquely identified. Finally, a purely orbital Kondo effect in the two-electron regime is also predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Baryon magnetic moments of p, n, Sigma(+), Sigma(-), Xi(0), Xi(-) and the beta decay ratios (G(A)/G(V)) of n -> p, Sigma(-) -> n and Xi(0) -> Sigma(+) are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component. in nucleon is small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Probing non trivial magnetic ordering in quantum magnets realized with ultracold lattice gases demands detection methods with some spatial resolution built on it. Here we demonstrate that the Faraday matter-light interface provides an experimentally feasible tool to distinguish indubitably different quantum phases of a given many-body system in a non-demolishing way. We illustrate our approach by focussing on the Heisenberg chain for spin-1 bosons in the presence of a SU(2) symmetry breaking field. We explain how using the light signal obtained via homodyne detection one can reconstruct the phase diagram of the model. Further we show that the very same technique that provides a direct experimentally measurable signal of different order parameters can be extended to detect also the presence of multipartite entanglement in such systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Instead of highly symmetrical T-symmetry cages common in self-assembly, the p-NMe2-substituted triphosphine CH3C{CH2P(4-C6H4NMe2)(3) gives open, polar C-3 symmetry cages [Ag-6(triphos)(4)X-3](3+) which lack one of the expected face-capping anions; despite its subtlety this difference occurs selectively in solution and two examples have been crystallographically characterised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bogotá Emprende

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La materia es divisible hasta la partícula elemental. Esta es la que carece de estructura interna y que no se puede descomponer en otras partículas más sencillas. Pero las diferentes teorías han ido evolucionando al encontrar a esta última partícula divisible. Así, se fueron detectando cada vez más partículas elementales hasta superar su número los 200. su número tan elevado hacia necesaria su clasificación: primero se dividieron en dos grandes grupo: handrones y leptones, según su tipo de interacción y los hadrones, a su vez , en bariones y mesones. Este esquema de clasificación tiene como grupo asociado el famoso SU (3)según el cual todos los hadrones de una misma familia tienen idéntico momento angular de spin, diferenciándose entre si las partículaa de cada familia mediante dos número cuánticos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supersymmetry is already observed in (i) nuclear physics where the same empirical formula based on a graded Lie group described even-even and odd-even nuclear spectra and (ii) in Nambu-BCS theory where there is a simple relationship between the energy gap of the basic fermion and the bosonic collective modes. We now suggest similar relationships between the large number of mesonic and baryonic excitations based on the SU(3) substructure in the U(15/30) graded Lie group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quark-diquark approximation is used to investigate the mass spectroscopy of the spin-1/2 baryons belonging to the SU(3)-flavor group in a nonrelativistic potential approach. The baryon spectra obtained are confronted with relativistic results and experimental data. Root-mean-square radii are also calculated. © 1993 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the context of the standard model the quantization of the electric charge occurs only family by family. When we consider the three families together with massless neutrinos the electric charge is not quantized any more. Here we show that a chiral bilepton gauge model based on the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)N explains the quantization of the electric charge when we take into account the three families of fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutrinos are massless or Dirac or Majorana massive fields.