891 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Neuropeptide-induced histamine release is thought to occur via receptor-independent mechanisms, with net charge and lipophilicity being important factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Literature data on the toxicity of chlorophenols for three luminescent bacteria (Vibrio fischeri, and the lux-marked Pseudomonas fluorescens 10586s pUCD607 and Burkholderia spp. RASC c2 (Tn4431)) have been analyzed in relation to a set of computed molecular physico-chemical properties. The quantitative structure-toxicity relationships of the compounds in each species showed marked differences when based upon semi-empirical molecular-orbital molecular and atom based properties. For mono-, di- and tri-chlorophenols multiple linear regression analysis of V. fischeri toxicity showed a good correlation with the solvent accessible surface area and the charge on the oxygen atom. This correlation successfully predicted the toxicity of the heavily chlorinated phenols, suggesting in V. fischeri only one overall mechanism is present for all chlorophenols. Good correlations were also found for RASC c2 with molecular properties, such as the surface area and the nucleophilic super-delocalizability of the oxygen. In contrast the best QSTR for P. fluorescens contained the 2nd order connectivity index and ELUMO suggesting a different, more reactive mechanism. Cross-species correlations were examined, and between V. fischeri and RASC c2 the inclusion of the minimum value of the nucleophilic susceptibility on the ring carbons produced good results. Poorer correlations were found with P. fluorescens highlighting the relative similarity of V. fischeri and RASC c2, in contrast to that of P. fluorescens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure-property relationship (QSPR) models were firstly established for the hydrophobic substituent constant (πX) using the theoretical descriptors derived solely from electrostatic potentials (EPSs) at the substituent atoms. The descriptors introduced are found to be related to hydrogen-bond basicity, hydrogen-bond acidity, cavity, or dipolarity/polarizability terms in linear solvation energy relationship, which endows the models good interpretability. The predictive capabilities of the models constructed were also verified by rigorous Monte Carlo cross-validation. Then, eight groups of meta- or para- disubstituted benzenes and one group of substituted pyridines were investigated. QSPR models for individual systems were achieved with the ESP-derived descriptors. Additionally, two QSPR models were also established for Rekker's fragment constants (foct), which is a secondary-treatment quantity and reflects average contribution of the fragment to logP. It has been demonstrated that the descriptors derived from ESPs at the fragments, can be well used to quantitatively express the relationship between fragment structures and their hydrophobic properties, regardless of the attached parent structure or the valence state. Finally, the relations of Hammett σ constant and ESP quantities were explored. It implies that σ and π, which are essential in classic QSAR and represent different type of contributions to biological activities, are also complementary in interaction site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty one new sodium heterosulfamates, RNHSO3Na, where the R portion contains mainly thiazole, benzothiazole, thiadiazole and pyridine ring structures, have been synthesized and their taste portfolios have been assessed. A database of 132 heterosulfamates ( both open-chain and cyclic) has been formed by combining these new compounds with an existing set of 101 heterosulfamates which were previously synthesized and for which taste data are available. Simple descriptors have been obtained using (i) measurements with Corey-Pauling-Koltun (CPK) space- filling models giving x, y and z dimensions and a volume VCPK, (ii) calculated first order molecular connectivities ((1)chi(v)) and (iii) the calculated Spartan program parameters to obtain HOMO, LUMO energies, the solvation energy E-solv and V-SPART AN. The techniques of linear (LDA) and quadratic (QDA) discriminant analysis and Tree analysis have then been employed to develop structure-taste relationships (SARs) that classify the sweet (S) and non-sweet (N) compounds into separate categories. In the LDA analysis 70% of the compounds were correctly classified ( this compares with 65% when the smaller data set of 101 compounds was used) and in the QDA analysis 68% were correctly classified ( compared to 80% previously). TheTree analysis correctly classified 81% ( compared to 86% previously). An alternative Tree analysis derived using the Cerius2 program and a set of physicochemical descriptors correctly classified only 54% of the compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the reactions of the atoms O(P-3), S(P-3), Se(P-3), and Te((3)p) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to formulate structure-activity relations (SARs) for reactions of O((3)p), S(P-3), Se (P-3), and Te((3)p) with alkenes. A comparison of the values predicted by both the correlations and the SARs with experimental data where they exist allowed us to assess the reliability of our method. We demonstrate the applicability of perturbation frontier molecular orbital theory to gas-phase reactions of these atoms with alkenes. The correlations are apparently not applicable to reactions of C(P-3), Si(P-3), N(S-4), and Al(P-2) atoms with alkenes, a conclusion that could be explained in terms of a different mechanism for reaction of these atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are developing computational tools supporting the detailed analysis of the dependence of neural electrophysiological response on dendritic morphology. We approach this problem by combining simulations of faithful models of neurons (experimental real life morphological data with known models of channel kinetics) with algorithmic extraction of morphological and physiological parameters and statistical analysis. In this paper, we present the novel method for an automatic recognition of spike trains in voltage traces, which eliminates the need for human intervention. This enables classification of waveforms with consistent criteria across all the analyzed traces and so it amounts to reduction of the noise in the data. This method allows for an automatic extraction of relevant physiological parameters necessary for further statistical analysis. In order to illustrate the usefulness of this procedure to analyze voltage traces, we characterized the influence of the somatic current injection level on several electrophysiological parameters in a set of modeled neurons. This application suggests that such an algorithmic processing of physiological data extracts parameters in a suitable form for further investigation of structure-activity relationship in single neurons.