942 resultados para SOLAR HOME SYSTEMS
Resumo:
Operalion and mainlenance (O&M) casi 01 solar home syslems (SHS) in pholovollaie rural electrification (PVRE) programmes is a key factor in the economic viability and long lerm suslainability. This paper reports on a 13000 inslalled SHSs programme carried oul in Moroceo. Il is presenled Ihe reliability analysis 01 Ihe SHSs as well as the distribution of real cests of installation, O&M and management to oblain respeclively Ihe reliability lunelions 01 Ihe SHS componenls and lo eharaclerize the overall programme cast structure.
Resumo:
In recent years, there has been a growing interest in incorporating microgrids in electrical power networks. This is due to various advantages they present, particularly the possibility of working in either autonomous mode or grid connected, which makes them highly versatile structures for incorporating intermittent generation and energy storage. However, they pose safety issues in being able to support a local island in case of utility disconnection. Thus, in the event of an unintentional island situation, they should be able to detect the loss of mains and disconnect for self-protection and safety reasons. Most of the anti-islanding schemes are implemented within control of single generation devices, such as dc-ac inverters used with solar electric systems being incompatible with the concept of microgrids due to the variety and multiplicity of sources within the microgrid. In this paper, a passive islanding detection method based on the change of the 5th harmonic voltage magnitude at the point of common coupling between grid-connected and islanded modes of operation is presented. Hardware test results from the application of this approach to a laboratory scale microgrid are shown. The experimental results demonstrate the validity of the proposed method, in meeting the requirements of IEEE 1547 standards.
Resumo:
Only recently, during the past five years, consumer electronics has been evolving rapidly. Many products have started to include “smart home” capabilities, enabling communication and interoperability of various smart devices. Even more devices and sensors can be remote controlled and monitored through cloud services. While the smart home systems have become very affordable to average consumer compared to the early solutions decades ago, there are still many issues and things that need to be fixed or improved upon: energy efficiency, connectivity with other devices and applications, security and privacy concerns, reliability, and response time. This paper focuses on designing Internet of Things (IoT) node and platform architectures that take these issues into account, notes other currently used solutions, and selects technologies in order to provide better solution. The node architecture aims for energy efficiency and modularity, while the platform architecture goals are in scalability, portability, maintainability, performance, and modularity. Moreover, the platform architecture attempts to improve user experience by providing higher reliability and lower response time compared to the alternative platforms. The architectures were developed iteratively using a development process involving research, planning, design, implementation, testing, and analysis. Additionally, they were documented using Kruchten’s 4+1 view model, which is used to describe the use cases and different views of the architectures. The node architecture consisted of energy efficient hardware, FC3180 microprocessor and CC2520 RF transceiver, modular operating system, Contiki, and a communication protocol, AllJoyn, used for providing better interoperability with other IoT devices and applications. The platform architecture provided reliable low response time control, monitoring, and initial setup capabilities by utilizing web technologies on various devices such as smart phones, tablets, and computers. Furthermore, an optional cloud service was provided in order to control devices and monitor sensors remotely by utilizing scalable high performance technologies in the backend enabling low response time and high reliability.
Resumo:
2016
Resumo:
In this abstract is presented an energy management system included in a SCADA system existent in a intelligent home. The system control the home energy resources according to the players definitions (electricity consumption and comfort levels), the electricity prices variation in real time mode and the DR events proposed by the aggregators.
Resumo:
Every year, a typical family in the United States spends around half of its home energy budget on heating and cooling. In Iowa, that percentage can be higher, due to temperature extremes reached during the winter and summer months. Unfortunately, many of those dollars often are wasted, because conditioned air escapes through leaky ceilings, walls and foundations—or flows through inadequately insulated attics, exterior walls and basements. In addition, many heating systems and air conditioners aren’t properly maintained or are more than 10 years old and very inefficient, compared to models being sold today. As a result, it makes sense to analyze your home as a collection of systems that must work together in order to achieve peak energy savings. For example, you won’t get anywhere near the savings you’re expecting from a new furnace if your airhandling ducts are uninsulated and leak at every joint. The most energy-efficient central air-conditioning setup won’t perform to your expectations if your attic insulation is inadequate and can’t reduce solar heat gain to help keep your home cool. And planting the wrong types of trees or shrubs close to your home adversely can affect potential energy savings all year long.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The aim of this study is to assess the current and future preconditions for conducting private business in municipal service systems for home care in Lahti and Hyvinkää in Finland, and in Uppsala and Huddinge in Sweden. This study also aims to assess the implications of quality related issues on the preconditions for conducting private business in the service systems in question. The theories and the research methodologies of the study are based on the Business Model Generation and the Business Model Canvas -concepts. Also a couple of frameworks on implications of quality are applied and integrated into the study. The study is completed as a case study – with structured and identical approaches for all four municipalities. The analyses and assessments of the study are primarily qualitative, but supported by simple quantitative methodologies. The data of the study consists primarily of publicly available information, and secondarily of answers provided by the case-municipalities to multiple choice questions. The results of the study show that the service systems for home care among the case-municipalities are, from perspective of private companies, diverse with local characteristics. Both the premises for conducting private business and the quality-issues are in many respects different in the Finnish and the Swedish case-municipalities. This is partly due to differences in the national service systems; the service voucher system versus the system of choice. Still, it appears that the current preconditions for conducting private business in the service systems for home care, including the implications of quality, would be more favorable in Uppsala and Huddinge than in Lahti and Hyvinkää. On the other hand, the service systems are subject to changes, and the most positive and significant development is here forecasted for a Finnish case-municipality (Lahti). Communication of quality is clearly more advanced in the Swedish case-municipalities. The results of this study can be utilized in several ways, for instance by private companies interested in entering into service systems for home care, either in some of the case-municipalities, or in some other Finnish or Swedish municipalities. Also municipalities can apply the analyses of the study when designing, developing or evaluating their own service systems for home care.
Resumo:
Solceller presenteras ofta som ett miljövänligt alternativ för energiproduktion. Det största hindret för en bredare ibruktagning av kiselbaserade solceller är deras höga pris. I och med upptäckten av ledande och halvledande organiska (kolbaserade) molekyler och polymerer har ett nytt forskningsområde, organisk elektronik, vuxit fram. Den stora fördelen med organisk elektronik är att de använda materialen oftast är lösliga. Tillverkning av elektroniska komponenter kan då göras med hjälp av konventionella trycktekniker där bläcket ersatts med upplösta organiska material. Detta har potential att betydligt sänka priset för solceller. Nackdelen med organisk elektronik är att de använda materialen är komplexa, och de fysikaliska processerna i dem likaså. I min avhandling har jag studerat fotofysiken i två polymerer, P3HT och APFO3, som kan användas för att tillverka organiska solceller. Blandade med fullerenderivatet PCBM, som är en stark elektronacceptor, fås ett material som effektivt producerar elektroner och hål under belysning. I praktiken bidrar dock inte alla skapade laddningar till strömmen ur solcellen. Elektronerna och hålen kan förbli bundna till varandra i olika exciterade tillstånd, och även de som är fria kan träffa på motsatta laddningar under vägen till kontakterna och rekombinera. Centralt i mitt arbete har varit att identifiera olika typer av exciterade tillstånd i dessa solcellsmaterial, samt att bestämma deras livstider och rekombination. Metoden för detta har varit s.k. fotoinducerad absorption, som mäter fotoexcitationernas absorptioner i infraröda våglängdsområdet. De två viktigaste resultaten som presenteras i avhandlingen är en ratekvationsmodell för fotoexcitationsdynamiken i APFO3 på ultrasnabba tidsskalor (femtosekund - microsekund) och bildandet av en rekombinationshämmande dipol vid gränsytan för P3HT och PCBM som följd av värmebehandling. Dessa resultat bidrar till förståelsen av de fotofysikaliska processerna i relaterade material.
Resumo:
The effect on geomagnetic activity of solar wind speed, compared with that of the strength of the interplanetary magnetic field, differs with geomagnetic latitude. In this study we construct a new index based on monthly standard deviations in the H-component of the geomagnetic field for all geomagnetic latitudes. We demonstrate that for this index the response at auroral regions correlates best with interplanetary coupling functions which include the solar wind speed while mid- and low-latitude regions respond to variations in the interplanetary magnetic field strength. These results are used to isolate the responsible geomagnetic current systems.
Resumo:
This review investigates the performance of photovoltaic and solar-assisted ground-source heat pumps in which solar heat is transferred to the ground to improve the coefficient of performance. A number of studies indicate that, for systems with adequately sized ground heat exchangers, the effect on system efficiency is small: about 1% improvement if the heat source is photovoltaic, a 1–2% decline if the source is solar thermal. With possible exceptions for systems in which the ground heat exchanger is undersized, or natural recharge from ground water is insufficient, solar thermal energy is better used for domestic hot water than to recharge ground heat. This appears particularly true outside the heating season, as although much of the heat extracted from the ground can be replaced, it seems to have little effect on the coefficient of performance. Any savings in electrical consumption that do result from an improved coefficient can easily be outweighed by an inefficient control system for the circulation pumps.
Resumo:
A variety of operational systems are vulnerable to disruption by solar disturbances brought to the Earth by the solar wind. Of particular importance to navigation systems are energetic charged particles which can generate temporary malfunctions and permanent damage in satellites. Modern spacecraft technology may prove to be particularly at risk during the next maximum of the solar cycle. In addition, the associated ionospheric disturbances cause phase shifts of transionospheric and ionosphere-reflected signals, giving positioning errors and loss of signal for GPS and Loran-C positioning systems and for over-the-horizon radars. We now have sufficient understanding of the solar wind, and how it interacts with the Earth's magnetic field, to predict statistically the likely effects on operational systems over the next solar cycle. We also have a number of advanced ways of detecting and tracking these disturbances through space but we cannot, as yet, provide accurate forecasts of individual disturbances that could be used to protect satellites and to correct errors. In addition, we have recently discovered long-term changes in the Sun, which mean that the number and severity of the disturbances to operational systems are increasing.