922 resultados para SITU NEUTRON-DIFFRACTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Much progress in nanoscience and nanotechnology has been made in the past few years thanks to the increased availability of sophisticated physical methods to characterize nanomaterials. These techniques include electron microscopy and scanning probe microscopies, in addition to standard techniques such as X-ray and neutron diffraction, X-ray scattering, and various spectroscopies. Characterization of nanomaterials includes the determination not only of size and shape, but also of the atomic and electronic structures and other important properties. In this article we describe some of the important methods employed for characterization of nanostructures, describing a few case studies for illustrative purposes. These case studies include characterizations of Au, ReO3, and GaN nanocrystals; ZnO, Ni, and Co nanowires; inorganic and carbon nanotubes; and two-dimensional graphene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio RHF/4-31G level molecular orbital calculations have been carried out on dimethoxymethane as a model compound for the acetal moiety in methyl pyranosides. The calculations are consistent with the predictions of the anomeric effect and the exo-anomeric effect. They reproduce very successfully the differences in molecular geometry observed by x-ray and neutron diffraction of single crystals of the methyl cy-D- and methyl 0-D-pyranosides. Calculations carried out at the 6-3 1G* level for methanediol confirm the earlier calculations at the 4-31G level, with smaller energy differences between the four staggered conformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structures of (1 - x) Na0.5Bi0.5TiO3-(x) CaTiO3 at room temperature have been investigated using neutron powder diffraction and dielectric studies. The system exhibits an orthorhombic (Pbnm) structure for x >= 0.15 and rhombohedral (R3c) for x <= 0.05. For x = 0.10, though the neutron diffraction pattern shows features of the orthorhombic (Pbnm) structure, Rietveld refinement using this structure shows a drastic reduction in the in-phase tilt angle (similar to 4 degrees) as compared to the corresponding value (similar to 8 degrees) for a neighbouring composition x = 0.15. The neutron diffraction pattern of x = 0.10 could be fitted equally well using a two-phase model (R3c + Pbnm) with orthorhombic as the minor phase (22%), without the need for a drastic decrease in the in-phase tilt angle. The dielectric studies of x = 0.10 revealed the presence of the polar R3c phase, thereby favouring the phase coexistence model, instead of a single-phase Pbnm structure, for this composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The infra-red and Raman spectra of ordinary and deuterated barium chloride dihydrate have been studied to throw light on the intramolecular hydrogen bonds in these two crystals. The frequencies of the stretching, bending and librational modes observed in infra-red and Raman spectra exclude the possibility of at least one of the OH.... Cl hydrogen bonds, contrary to the results of NMR and neutron diffraction studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A correlation of the structural data on IS hydrates obtained by x-ray diffraction, neutron diffraction, and proton magnetic resonance reveals that when a water molecule is hydrogen bonded into a crystal structure and the angle subtended at the donor water oxygen by the acceptor atoms deviates from the vapor H-O-H angle, bent hydrogen bonds are formed in preference to distortion of the H-O-H angle. Theoretical justification for this result is obtained from energy considerations by calculating the energy of formation of bent hydrogen bonds on the basis of the Lippincott-Schroeder potential function model for the hydrogen bond and the energy of deformation of the H-O-H angle from spectroscopic force constants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many transition metal oxide materials of high chemical purity are not necessarily monophasic. Thus, single crystals of chemically pure rare earth manganites and cobaltates of the general formula Ln1-xAxMO3 (Ln=rare earth metal, A=alkaline earth metal, M=Mn, Co) exhibit the phenomenon of electronic phase separation wherein phases of different electronic and magnetic properties coexist. Such phase separation, the length scale of which can vary anywhere between a few nanometers to microns, gives distinct signatures in X-ray and neutron diffraction patterns, electrical and magnetic properties, as well as in NMR and other spectroscopies. While the probe one employs to investigate electronic phase separation depends on the length scale, it is noteworthy that direct imaging of the inhomogeneities has been accomplished. Some understanding of this phenomenon has been possible on the basis of some of the theoretical models, but we are far from unraveling the varied aspects of this new phenomenon. Herein, we present the highlights of experimental techniques and theoretical approaches, and comment on the future outlook for this fascinating phenomenon

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nature of the low-temperature magnetic state of polycrystalline La0.67Ca0.33Mn0.9Fe0.1O3 has been studied by magnetization, neutron diffraction, and neutron depolarization measurements. Neutron depolarization measurements indicate the existence of ferromagnetic domains with low net magnetic moments below 108 K. The substitution of Mn3+ by Fe3+ reduces the number of available hopping sites for the Mn e(g) (up) electron and suppresses the double exchange, resulting in the reduction of ferromagnetic exchange. The competition between the ferromagnetic double-exchange interactions and the coexisting antiferromagnetic superexchange interactions and its randomness due to random substitutions of Mn3+ with Fe3+ drive the system into a randomly canted ferromagnetic state at low temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Members of the PrBa2Cu3O7–delta system possessing the orthorhombic structure over a wide range of oxygen stoichiometry (delta=–0.5 to +0.5) have been prepared and characterized. Similar compositions with a tetragonal structure have also been prepared. None of the oxides is superconducting, independent of the structure or stoichiometry. Praseodymium seems to be present to a small extent in the 4+ state in oxygen-excess (negative delta) samples. Orthorhombic PrBa2Cu3O7–delta samples show the presence of twins suggesting that twins arise from orthorhombicity and have no relation to the superconductivity. A neutron diffraction study of a near-stoichiometric sample has shown a disordered orthorhombic structure with 72% occupancy of the 01 (chain) sites and with no interchange between Pr and Ba sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two distinct ferromagnetic phases of LaMn0.5Co0.5O3 having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature T-c is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn-O-Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in T-c. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the T-c. Electrical transport properties of both the phases have been investigated based on the lattice distortion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectroscopy can provide valuable information on the structure of disordered matter beyond that which is available through e.g. x-ray and neutron diffraction. X-ray Raman scattering is a non-resonant element-sensitive process which allows bulk-sensitive measurements of core-excited spectra from light-element samples. In this thesis, x-ray Raman scattering is used to study the local structure of hydrogen-bonded liquids and solids, including liquid water, a series of linear and branched alcohols, and high-pressure ice phases. Connecting the spectral features to the local atomic-scale structure involves theoretical references, and in the case of hydrogen-bonded systems the interpretation of the spectra is currently actively debated. The systematic studies of the intra- and intermolecular effects in alcohols, non-hydrogen-bonded neighbors in high-pressure ices, and the effect of temperature in liquid water are used to demonstrate different aspects of the local structure that can influence the near-edge spectra. Additionally, the determination of the extended x-ray absorption fine structure is addressed in a momentum-transfer dependent study. This work demonstrates the potential of x-ray Raman scattering for unique studies of the local structure of a variety of disordered light-element systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An examination of radiation-damage processes consequent to high-energy irradiation in certain ammonium salts studied using ESR of free radical together with the structural information available from neutron diffraction studies shows that, other factors being equal/nearly equal, symmetry-related bonds are preserved in preference to those unrelated to one another by any symmetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conformational features and supramolecular structural organization in three aryl biscarbonates and an aryl biscarbamate with rigid acetylenic unit providing variable spacer lengths have been probed to gain insights into the packing features associated with molecular symmetry and the intermolecular interactions involving `organic' fluorine. Four structures but-2-yne-1,4-diyl bis(2,3,4,5,6-pentafluorophenylcarbonate), 1; but-2-yne-1,4-diyl bis(4-fluorophenylcarbonate), 2; but-2-yne-1,4-diyl bis(2,3,4,5,6-pentafluorophenylcarbamate), 3 and hexa-2,4-diyne-1,6-diyl bis(2,3,4,5,6-pentafluorophenylcarbonate), 4 have been analyzed in this context. Compound 1 adopts a non-centrosymmetric ``twisted'' (syn) conformation, whereas 2, 3 and 4 acquire a centrosymmetric ``extended'' (anti) conformation. Weak intermolecular interactions and in particular those involving fluorine are found to dictate this conformational variation in the crystal structure of 1. A single-crystal neutron diffraction study at 90 K was performed on 1 to obtain further insights into these interactions involving `organic' fluorine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.