945 resultados para Rust fungi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some naturally occurring strains of fungi cease growing through successive subculturing, i.e., they senesce. In Neurospora, senescing strains usually contain intramitochondrial linear or circular plasmids. An entire plasmid or its part(s) integrates into the mtDNA, causing insertional mutagenesis. The functionally defective mitochondria replicate faster than the wild-type mitochondria and spread through interconnected hyphal cells. Senescence could also be due to spontaneous lethal nuclear gene mutations arising in the multinucleated mycelium. However, their phenotypic effects remain masked until the nuclei segregate into a homokaryotic spore, and the spore germinates to form a mycelium that is incapable of extended culturing. Ultimately the growth of a fungal colony ceases due to dysfunctional oxidative phosphorylation. Results with senescing nuclear mutants or growth-impaired cytoplasmic mutants suggest that mtDNA is inherently unstable, requiring protection by as yet unidentified nuclear-gene-encoded factors for normal functioning. Interestingly, these results are in accord with the endosymbiotic theory of origin of eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilization of mixtures of glucose and sucrose at nonlimiting concentrations was studied in batch cultures of two common thermophilic fungi, Thermomyces lanuginosus and Penicilium duponti. The sucrose-utilizing enzymes (sucrose permease and invertase) in both fungi were inducible. Both sugars were used concurrently,regardless of their relative proportion in the mixture. At the optimal growth temperature (50C), T.lanuginosus utilized sucrose earlier than it did glucose, but at a suboptimal growth temperature (30°C) the two sugars were utilized at nearly comparable rates. The coutilization of the two sugars was most likely possible because (i) invertase was insensitive to catabolite repression by glucose, (ii) the activity and affinity of the glucose transport system were lowered when sucrose was included in the growth medium, and (iii) the activity of the glucose uptake system was also subject to repression by high concentrations of glucose itself. The concurrent utilization of the available carbon sources by thermophilic fungi might be an adaptive strategy for opportunistic growth in nature under conditions of low nutrient availability and thermal fluctuations in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Scots pine bark beetle, Tomicus piniperda is a secondary colonizer of pine and other conifers. It is a native species from Europe and Asia that was recently introduced in North America. Although it is necessary to understand this insect's interactions with other organisms, few studies have focussed on its fungal associates. This study focused on the effect of latitude in the occurrence of fungi associated with T. piniperda. T. piniperda were collected from Pinus sylvestris in Northern (Rovaniemi) and Southern (Hyytiala) Finland. Both endo- and epi- mycota were isolated. The fungi were identified using a combination of morphological features and molecular data. The results revealed a great diversity of fungi species associated with T. piniperda, with a total of 3073 isolates representing 23 species. The most frequently isolated fungi in the bark beetles from Northern Finland were Beauvaria bassiana, Kuraishia sp. and Penicillium sp. whereas P. brevicompactum and Mortierella sp. were mostly observed in the South. Ophiostoma canum and O. minus were also observed. The number of isolates per insect in the north was 2.83 epi- and 2.38 for endo-mycota fungus. In the south, the number of isolates per insect was 4.1 for epi- and 3.5 for endo-mycota. Statistical analysis indicated that there was significant differences in fungal populations associated with the beetles in Southern and Northern Finland. There was however no significant difference between the epi- and endo-mycota fungal populations. The highest richness and diversity of the fungal species was observed in the South. However, the overall fungal diversity index analysis revealed that the mycobiota was undersampled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to forecast the potential of thermophilic fungi to grow in soil in the laboratory and in the field in the presence of a predominantly mesophilic fungal flora at usual temperature. The respiratory rate of thermophilic fungi was markedly responsive to changes in temperature, but that of mesophilic fungi was relatively independent of such changes. This suggested that in a thermally fluctuating environment, thermophilic fungi may be at a physiological disadvantage compared to mesophilic fungi. In mixed cultures in soil plates, thermophilic fungi outgrew mesophilic fungi under a fluctuating temperature regime only when the amplitude of the fluctuating temperatures was small and approached their temperature optima for growth. An antibody probe was used to detect the activity of native or an introduced strain of a thermophilic fungus, Thermomyces lanuginosus, under field conditions. The results suggest that although widespread, thermophilic fungi are ordinarily not an active component of soil microflora. Their presence in soil most likely may be the result of the aerial dissemination of propagules from composting plant material.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of endophytes, particularly endophytic fungi, capable of demonstrating desirable functional traits worth exploitation using red biotechnology is well established. However, these discoveries have not yet translated into industrial bioprocesses for commercial production of biopharmaceuticals using fungal endophytes. Here, we define the current challenges in transforming curiosity driven discoveries into industrial scale endophyte biotechnology. The possible practical, feasible, and sustainable strategies that can lead to harnessing fungal endophyte-mediated pharmaceutical products are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four fungal species, F71PJ Acremonium sp., F531 Cylindrocarpon sp., F542, Botrytis sp., and F964 Fusarium culmorum [Wm. G. Sm.] Sacc. were recovered from hydrilla [ Hydrilla verticillata (L. f.) Royle] shoots or from soil and water surrounding hydrilla growing in ponds and lakes in Florida and shown to be capable of killing hydrilla in a bioassay. The isolates were tested singly and in combination with the leaf-mining fly, Hydrellia pakistanae (Diptera: Ephydridae), for their capability to kill or severely damage hydrilla in a bioassay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.