968 resultados para Resonant Frequency
Resumo:
This paper proposes a chip-scale microbubble-based biosensing platform. An encapsulated microbubble oscillates acoustically in liquid when exposed to an ultrasound field with its resonant frequency set by shell parameters. Changes in the resonant frequency of the microbubble can be used to monitor analyte-binding events on the shell. A device concept is proposed where ultrasonic transducers are integrated within a microfluidic channel, inside which electrodes are patterned for differential measurements of microbubble impedance. This device enables simultaneous measurements of the acoustic and electrical response of the microbubble, from which both mechanical and electrical parameters can be extracted. These parameters are used to provide a signature of the analyte. This paper presents acoustic and electrical models of the microbubbles, with the effect of shell parameters being thoroughly discussed. © 2013 IEEE.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.
Resumo:
The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of U-238(72+) with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.
Resumo:
The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process. A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions. The results indicate that the migration of HSO4- anions was indispensable in the redox process of the heteropolyan ions in a I mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.
Resumo:
利用反共振原理可有效减小振动机械对基础的作用,提高振动机械的寿命。建立了原点反共振振动机的动力学模型,阐明了其工作原理。以工作体和下质体振幅稳定为核心,分析了各系统参数一定时质量比和反共振频率比对系统振幅稳定性的影响情况,得到了作为组合参数时质量比和反共振频率比分别与上下质体动力放大因子的关系曲面,由此可得到满足工艺要求并能保证振幅稳定的参数区间,为各类反共振振动机设计提供了重要依据。研究了物料质量波动对系统振幅稳定性的影响和反共振点的漂移情况,揭示了对反共振机激振频率进行控制的必要性。在合理动力学参数组合的前提下通过引入控制技术,有效地提高了反共振振动机的工作机体和下质体的振幅稳定性。
Design and implementation of the embedded capacitance layers for decoupling of wireless sensor nodes
Resumo:
In this paper, the embedded capacitance material (ECM) is fabricated between the power and ground layers of the wireless sensor nodes, forming an integrated capacitance to replace the large amount of decoupling capacitors on the board. The ECM material, whose dielectric constant is 16, has the same size of the wireless sensor nodes of 3cm*3cm, with a thickness of only 14μm. Though the capacitance of a single ECM layer being only around 8nF, there are two reasons the ECM layers can still replace the high frequency decoupling capacitors (100nF in our case) on the board. The first reason is: the parasitic inductance of the ECM layer is much lower than the surface mount capacitors'. A smaller capacitance value of the ECM layer could achieve the same resonant frequency of the surface mount decoupling capacitors. Simulation and measurement fit this assumption well. The second reason is: more than one layer of ECM material are utilized during the design step to get a parallel connection of the several ECM capacitance layers, finally leading to a larger value of the capacitance and smaller value of parasitic. Characterization of the ECM is carried out by the LCR meter. To evaluate the behaviors of the ECM layer, time and frequency domain measurements are performed on the power-bus decoupling of the wireless sensor nodes. Comparison with the measurements of bare PCB board and decoupling capacitors solution are provided to show the improvement of the ECM layer. Measurements show that the implementation of the ECM layer can not only save the space of the surface mount decoupling capacitors, but also provide better power-bus decoupling to the nodes.
Resumo:
Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.
Resumo:
A wineglass has been used as an acoustic resonator to enhance the photoacoustic signal generated by laser excitation of absorbing dyes in solution. The amplitude of the acoustic signal was recorded using a fiber-optic transducer based on a Fabry-Pérot cavity attached to the rim of the wineglass. The optical and acoustic properties of the setup were characterized, and it was used to quantify the concentration of phosphomolybdenum blue and methyl red solutions. Detection limits of 1.2 ppm and 8 muM were obtained, respectively.
Resumo:
A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.
Resumo:
A microfluidic glass chip system incorporating a quartz crystal microbalance (QCM) to measure the square root of the viscosity-density product of room temperature ionic liquids (RTILs) is presented. The QCM covers a central recess on a glass chip, with a seal formed by tightly clamping from above outside the sensing region. The change in resonant frequency of the QCM allows for the determination of the square root viscosity-density product of RTILs to a limit of similar to 10 kg m(-2) s(-0.5). This method has reduced the sample size needed for characterization from 1.5 ml to only 30 mu l and allows the measurement to be made in an enclosed system.
Resumo:
The electrical and communication performance of a 0.8-mu W UHF temperature telemeter designed for human vaginal placement is discussed; a solenoidal loop antenna was used, occupying a volume of 0.1 cm(3). In situ, measured power absorption was between 19-25 dB, resulting in an effective operating range of 10 m. Capacitive loading lowered the antenna's resonant frequency by 1.4% and there was a significant polarization change in the radiated output.
Resumo:
This paper proposes a substrate integrated waveguide
(SIW) cavity-based method that is compliant with
ground-signal–ground (GSG) probing technology for dielectric
characterization of printed circuit board materials at millimeter
wavelengths. This paper presents the theory necessary to retrieve
dielectric parameters from the resonant characteristics of SIW
cavities with particular attention placed on the coupling scheme
and means for obtaining the unloaded resonant frequency. Different
sets of samples are designed and measured to address the
influence of the manufacturing process on the method. Material
parameters are extracted at - and -band from measured data
with the effect of surface roughness of the circuit metallization
taken into account.
Resumo:
This article presents the results from an experimental program designed to evaluate the performance of a system consisting of a readout unit and a ribbon type Fiber Optic Sensor (FOS) based on Brillouin Optical Time Domain Analysis (BOTDA). The system is intended for the detection of cracks as well as the monitoring of long-term performance for steel bridge girders. The program consisted of introducing a crack at the center of a 3-m-long steel beam and monitoring its progression using static loading tests performed at ambient and sub-zero temperatures. For sensor lengths similar to those used in the field, the resonant frequency shifts per unit increase in crack width were found to decrease from 114 MHz/mm at ambient temperature (~25C) to 65 MHz/mm at -10C. Results also revealed nonlinearity and variability, which can be attributed to an incompatibility between the settings of the laser pump in the readout unit and the sensor length. Significant losses were detected along the bonded segments of the sensor and were attributed to the presence of ripples along the sensor. These undulations worsen with a reduction in temperature and are induced by the bonding procedure as well as the slack provided in the plastic sleeves containing the splices.
Resumo:
A compact implantable printed meandered folded dipole antenna with a volume of 101.8 mm3 and robust performance is presented for operation in the 2.4 GHz medical ISM bands. The implant antenna is shown to maintain its return loss performance in the 2360???2400 MHz, 2400???2483.5 MHz and 2483.5???2500 MHz frequency bands, simulated in eleven different body tissue types with a broad range of electrical properties. Bandwidth and resonant frequency changes are reported for the same antenna implanted in high water content tissues such as muscle and skin as well as low water content tissues such as subcutaneous fat and bone. The antenna was also shown to maintain its return loss performance as it was moved towards a tissue boundary within a simulated phantom testbed.