974 resultados para Resistance testing
Resumo:
A study was conducted to determine the incidence of Salmonella enterica serovar Enteritidis and other Salmonella serovars on eggshell, egg contents and on egg-storing trays. A total of 492 eggs and 82 egg-storing trays were examined over a period of 1 year from different retail outlets of a residential area of Coimbatore city, South India. Salmonella contamination was recorded in 38 of 492 (7.7%) eggs out of which 29 was in eggshell (5.9%) and 9 in egg contents (1.8%). Around 7.5% of the egg-storing trays were also found to be contaminated with Salmonella. Serotyping of the Salmonella strains showed that 89.7% of the strains from eggshell, 100% of the strains from egg contents and 71.4% of the strains from egg-storing trays were Salmonella Enteritidis. Other serovarvars encountered were S. Cerro, S. Molade and S. Mbandaka from eggshell and S. Cerro from egg-storing trays. Seasonal variations in the prevalence pattern were identified with, a higher prevalence during monsoon months followed by post-monsoon and premonsoon. Further examination of the Salmonella strains was carried out by testing their antimicrobial sensitivity against 10 commonly used antimicrobials. Results revealed high prevalence of multiple antimicrobial resistance among these strains suggesting possible prior selection by use of antimicrobials in egg production
Resumo:
The principles of operation of an experimental prototype instrument known as J-SCAN are described along with the derivation of formulae for the rapid calculation of normalized impedances; the structure of the instrument; relevant probe design parameters; digital quantization errors; and approaches for the optimization of single frequency operation. An eddy current probe is used As the inductance element of a passive tuned-circuit which is repeatedly excited with short impulses. Each impulse excites an oscillation which is subject to decay dependent upon the values of the tuned-circuit components: resistance, inductance and capacitance. Changing conditions under the probe that affect the resistance and inductance of this circuit will thus be detected through changes in the transient response. These changes in transient response, oscillation frequency and rate of decay, are digitized, and then normalized values for probe resistance and inductance changes are calculated immediately in a micro processor. This approach coupled with a minimum analogue processing and maximum of digital processing has advantages compared with the conventional approaches to eddy current instruments. In particular there are: the absence of an out of balance condition and the flexibility and stability of digital data processing.
Resumo:
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Resumo:
Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.
Resumo:
The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0 mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1 mm of displacement, no statistically significant difference was found. At 2 mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A major difficulty to achieve maximum weight savings in the manufacture of composite structural components, is the tendency of these materials have the formation of voids and cracks in the interior and surface components. In aeronautical applications, controlling the volume fraction of fibers, resins and empty the components of composite is very hard. In this work, composites of epoxy matrix RTM6 reinforced with NCF (non crimp fabric carbon) processed by resin transfer molding (RTM) were characterized for porosity (P-ap) and density (rho(ad)). We used a method based on Archimedes' principle (ASTM C830) and the technique of helium pycnometer. The porosity values were compared with those determined by acid digestion (ASTM D3171). The mechanical properties of processed composites was evaluated by testing on the performing flexural and the results were correlated with the porosity value. All techniques tested to determine void content are satisfactory. The differents results can be justified for heterogeneous void distribution on laminate and differences among techniques characteristics. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11
Resumo:
Purpose: To evaluate the root fracture strength of human single-rooted premolars restored with customized fiberglass post-core systems after fatigue simulation. Methods: 40 human premolars had their crowns cut and the root length was standardized to 13 mm. The teeth were endodontically treated and embedded in acrylic resin. The specimens were distributed into four groups (n=10) according to the restorative material used: prefabricated fiber post (PFP), PFP+accessory fiber posts (PFPa), PFP+unidirectional fiberglass (PFPf), and unidirectional fiberglass customized post (CP). All posts were luted using resin cement and the cores were built up with a resin composite. The samples were stored for 24 hours at 37 degrees C and 100% relative humidity and then submitted to mechanical cycling. The specimens were then compressive-loaded in a universal testing machine at a crosshead speed of 0.5 mm/minute until fracture. The failure patterns were analyzed and classified. Data was submitted to one-way ANOVA and Tukey's test (alpha= 0.05). Results: The mean values of maximum load (N) were: PFP - 811.4 +/- 124.3; PFPa - 729.2 +/- 157.2; PFPf - 747.5 +/- 204.7; CP - 762.4 +/- 110. Statistical differences were not observed among the groups. All groups showed favorable restorable failures. Fiberglass customized post did not show improved fracture resistance or differences in failure patterns when compared to prefabricated glass fiber posts. (Am J Dent 2012;25:35-38).
Resumo:
The purpose of this study was to evaluate in vitro the efficacy of root reinforcements by light-cured composite resin or zirconium fiber post in simulated immature non-vital teeth. Fifty-six bovine incisors teeth were used for this study. The crown of each tooth was removed in the medium third to obtain a standard length of 30 mm. The specimens were divided into four groups (n = 14): G1) the root canals were instrumented and enlarged to simulate immature non-vital teeth and were reinforced with a light-cured composite resin using a translucent curing post (Luminex system); (G2) the specimens were instrumented, enlarged and they received root reinforcement with zirconium fiber post; G3 (positive control): they received similar treatment to the G1 and G2 groups, but did not receive root reinforcement; G4 (negative control): the roots were not weakened and did not receive reinforcement. Every tooth was submitted to compressive force using an Instron testing machine with an angle of 45&DEG; at a speed of 1 mm min(-1) until the fracture. The results showed a markedly increased resistance to fracture in the G1 and G2 (122.38 and 122.08 kgf, respectively). Among the results of G1 and G2 there was not any significant difference (P > 0.05) but they were significantly different from the control groups (P < 0.05). The conclusion is that the use of root reinforcements with zirconiun fiber post or composite resin can increase significantly the structural resistance of the weakened teeth, decreasing the risk of the fracture.
Resumo:
This study evaluated the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber posts and varying quantities of coronal dentin. Sixty freshly extracted upper canines were randomly divided into groups of 10 teeth each. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis. Data were analyzed by 1-way analysis of variance and Tukey test (alpha = .05). Significant differences (P < .001) were found among the mean fracture forces of the test groups (positive control, 0 mm, 1 mm, 2 mm, 3 mm, and negative control groups: 1022.82 N, 1008.22 N, 1292.52 N, 1289.19 N, 1255.38 N, and 1582.11, respectively). These results suggested that the amount of coronal dentin did not significantly increase the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber post and composite resin core. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e52-e57)
Resumo:
This study evaluated the influence of the cementation length of glass fiber-reinforced composite (FRC) on the fatigue resistance of bovine teeth restored with an adhesively cemented FRC. Thirty roots of single-rooted bovine teeth were allocated to 3 groups (n = 10), according to the ratio of crown length/root length (post cementation length): group 1 = 2/3, group 2 = 1/2, and group 3 = 1/1. The roots were prepared, the fiber posts (FRC Postec Plus) were cemented, and the specimens were submitted to 2 million mechanical cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture, and data were submitted to statistical analysis. All specimens were resistant to fatigue. Taking into account the methodology and results of this study, the evaluated fiber posts can be cemented based on the ratio of crown/root at 1/1. Further clinical studies must be conducted to verify this ratio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)