936 resultados para Reduced Folate Carrier Protein
Resumo:
The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.
Resumo:
Domoinsäure ist ein von mehreren Arten mariner Kieselalgen der Gattung Pseudonitzschia produziertes Toxin, welches während einer Algenblüte in Molluscen wie z.B. der Miesmuschel Mytilus sp. akkumuliert werden kann. Beim Verzehr solch kontaminierter Muscheln können sowohl beim Menschen als auch bei Tieren erhebliche Vergiftungserscheinungen auftreten, die von Übelkeit, Kopfschmerzen und Orientierungsstörungen bis hin zum Verlust des Kurzzeitgedächtnisses (daher auch als amnesic shellfish poisoning bekannt) reichen und in einigen Fällen tödlich enden. rnDie heute gängigen Methoden zur Detektion von Domoinsäure in Muschelgewebe wie Flüssigkeitschromatographie und Maus-Bioassay sind zeit- und kostenintensiv bzw. in Anbetracht einer Verbesserung des Tierschutzes aus ethischer Sicht nicht zu vertreten. Immunologische Testsysteme stellen eine erstrebenswerte Alternative dar, da sie sich durch eine vergleichsweise einfache Handhabung, hohe Selektivität und Reproduzierbarkeit auszeichnen.rnDas Ziel der vorliegenden Arbeit war es, ein solches immunologisches Testsystem zur Detektion von Domoinsäure zu entwickeln. Hierfür wurden zunächst Antikörper gegen Domoinsäure gewonnen, wofür das Toxin wiederum als erstes über die Carbodiimid-Methode an das Trägerprotein keyhole limpet hemocyanin (KLH) gekoppelt wurde, um eine Immunantwort auslösen zu können. Kaninchen und Mäuse wurden mit KLH-DO-Konjugaten nach vorgegebenen Immunisierungsschemata immunisiert. Nach vier Blutabnahmen zeigte das polyklonale Kaninchenantiserum eine ausreichend hohe Sensitivität zum Antigen; das nachfolgende Detektionssystem wurde mit Hilfe dieses polyklonalen Antikörpers aufgebaut. Zwar ist es gegen Ende der Arbeit auch gelungen, einen spezifischen monoklonalen Antikörper aus der Maus zu gewinnen, jedoch konnte dieser aus zeitlichen Gründen nicht mehr im Detektionssystem etabliert werden, was durchaus wünschenswert gewesen wäre. rnWeiterhin wurde Domoinsäure im Zuge der Entwicklung eines neuartigen Testsystems an die Trägerproteine Ovalbumin, Trypsininhibitor und Casein sowie an Biotin konjugiert. Die Kopplungserfolge wurden im ELISA, Western Blot bzw. Dot Blot nachgewiesen. Die Ovalbumin-gekoppelte sowie die biotinylierte Domoinsäure dienten im Folgenden als die zu messenden Größen in den Detektionsassays- die in einer zu untersuchenden Probe vorhandende, kompetitierende Domoinsäure wurde somit indirekt nachgewiesen. rnDer zulässige Höchstwert für Domoinsäure liegt bei 20 µg/g Muschelgewebe. Sowohl mit Biotin-DO als auch mit OVA-DO als den zu messenden Größen waren Domoinsäurekonzentrationen unterhalb dieses Grenzwertes nachweisbar; allerdings erwies sich der Aufbau mit Biotin-DO um das ca. 20-fache empfindlicher als jener mit OVA-DO. rnDie in dieser Arbeit präsentierten Ergebnisse könnten als Grundlage zur Etablierung eines kommerzialisierbaren immunologischen Testsystems zur Detektion von Domoinsäure und anderen Biotoxinen dienen. Nach erfolgreicher Validierung wäre ein solches Testsystem in seiner Handhabung einfacher als die gängige Flüssigkeitschromatographie und besser reproduzierbar als der Maus-Bioassay.rn
Resumo:
Zur Entwicklung einer selektiven Tumorimmuntherapie wurden im Rahmen dieser Dissertation potentielle Vakzine dargestellt. Als Leitstruktur für die Impfstoffkandidaten diente das Oberflächenglycoprotein MUC1, das durch fehlregulierte Enzymaktivitäten auf malignen Zellen strukturell verändert überexprimiert wird. Hierbei wurde insbesondere der Einfluss von Fluorsubstituenten in der Glycanseitenkette auf die Immunogenität und die Spezifität der Vakzine untersucht. Dazu wurde ein dreifach fluoriertes Analogon an Tetanus Toxoid (TTox) als Trägerprotein angebunden und in Immunisierungsstudien an transgenen Mäusen konnten hohe Selektivitäten und starke Immunantworten nachgewiesen werden. Die Darstellung des 20 Aminosäuren umfassenden Glycopeptides erfolgte an der festen Phase, wobei unterschiedlich fluorierte Thomsen-Friedenreich-Antigenanaloga anstelle eines Threonins in die Sequenz eingebaut wurden. Diese Bausteine wurden durch Glycosylierungsreaktionen fluorierter Donoren sowie Akzeptoren hergestellt, wobei Letztere durch nachträgliche Fluorierungen der Glycosylaminosäure erhalten wurden. Darüber hinaus wurde die Durchführung der komplexen Glycosylierungsreaktionen in Mikroreaktoren am Beispiel zweier fluorierter Glycosylaminosäuren untersucht. Neben der raschen Optimierung der Reaktionsparameter in Durchflussreaktoren konnte die direkte Umsetzung in einem mikrostrukturierten Reaktor in den präparativen Maßstab demonstriert werden.
Resumo:
Krebserkrankungen gehen oft mit der Überexpression von mucinartigen Glycoproteinen auf der Zelloberfläche einher. In vielen Krebserkrankungen wird aufgrund der fehlerhaften Expression verschiedener Glycosyltransferasen das transmembranständige Glycoprotein MUC1, mit verkürzten Glycanstrukturen, überexprimiert. Das Auftreten der verschiedenen tumor-assoziierten Antigene (TACA) korreliert meist mit dem Fortschreiten des Krebs und der Metastasierung. Daher stellen TACAs interessante Zielmoleküle für die Entwicklung einer aktiven Tumorimmuntherapie zur spezifischen Behandlung von Adenokarzinomen dar. In dieser Arbeit galt das Interesse dem epithelialen Mucin MUC1, auf Basis dessen ein synthetischer Zugang zu einheitlichen Antitumorvakzinen, welche aus mucinanalogen Glyco-peptid¬konjugaten des MUC1 und Carrierproteinen bestehen, hergestellt werden sollten.rnUm eine tumorspezifische Immunantwort zu erhalten, müssen die selbst schwach immunogenen MUC1-Antigene über einen nicht-immunogenen Spacer mit einem geeigneten Trägerprotein, wie Tetanus Toxoid oder Rinderserumalbumin (BSA), verbunden werden. rnDa ein Einsatz von Glycokonjugaten in Impfstoffen durch die metabolische Labilität der O-glycosidischen Bindungen eingeschränkt ist, wurden hierzu erstmals fluorierte Vetreter von MUC1-analogen Glycopeptiden verwendet, in denen das Kohlenhydrat-Epitop durch den strategischen Einbau von Fluor¬atomen gegenüber einem raschen Abbau durch Glycosidasen geschützt werden soll. Dazu wurden auf Basis des literaturbekannten Thomsen-Friedenreich-Antigens Synthesestrategien zur Herstellung eines 2’F- und eines 2’,6’-bisfluorierten-Analogons erarbeitet. rnSchlüsselschritte in der Synthese stellten neben der elektrophilen Fluorierung eines Galactalvorläufers auch die -selektive 3-Galactosylierung des TN-Antigen-Bausteins zum 2’F- und 2’,6’-bisfluorierten-Analogons des TF-Disaccharids dar. Durch entsprechende Schutzgruppentransformationen wurden die beiden Derivate in entsprechende Glycosyl¬amino-säure-Bausteine für die Festphasensynthese überführt.rnNeben den beiden Analoga des TF-Antigens wurde auch erstmals ein 2F-Analogon des 2,6-Sialyl-T-Antigens hergestellt. Dazu wurde der entsprechende 2’F-TF-Baustein mit Sialinsäure-xanthogenat nach bereits bekannten Syntheseprotokollen umgesetzt. Aufgrund von Substanzmangel konnte die Verbindung nicht zur Synthese eines MUC1-Glycopeptid-Analogons herangezogen werden.rnDer Einbau der hergestellten Glycosylaminosäure-Bausteine erfolgte in die aus 20 Amino-säuren bestehende vollständige Wiederholungseinheit aus der tandem repeat-Sequenz des MUC1, wobei die entsprechenden Glycanseitenketten stets in Position 6 eingeführt wurden. Um die erhaltenen Glycopeptide für immunologische Studien an Carrier-Proteine anbinden zu können und so ggf. zu funktionsfähigen Impfstoff-Konjugaten zu gelangen, wurden diese stets N-terminal mit einem nicht-immunogenen Triethylenglycol-Spacer verknüpft. Die anschließende Funktionalisierung mit Quadratsäurediethylester erlaubte die spätere chemoselektive Konjugation an Trägerproteine, wie Tetanus Toxoid oder BSA.rnIn ersten immunologischen Bindungsstudien wurden die synthetisierten BSA-Glycopeptid-Konjugate mit Serum-Antikörpern aus Vakzinierungsstudien von MUC1-Tetanus Toxoid-Konjugaten, die (i) eine natürliche TF-Antigenstruktur und (ii) ein entsprechendes TF-Antigenderivat mit Fluorsubstituenten an C-6 des Galactosamin-Bausteins und C-6’ des Galactoserests tragen, untersucht.rn
Resumo:
Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.
Resumo:
OBJECTIVES: The aim of the study was to evaluate the biological effects of water eluents from polycarbonate based esthetic orthodontic brackets. METHODS: The composite polycarbonate brackets tested were Silkon Plus (SL, fiber-glass-reinforced), Elan ME (EL, ceramic particle-reinforced) and Elegance (EG, fiber-glass-reinforced). An unfilled polyoxymethylene bracket (Brilliant, BR) was used as control. The brackets' composition was analyzed by ATR-FTIR spectrometry. The cytotoxicity and estrogenicity of the eluents obtained after 3months storage of the brackets in water (37°C) were investigated in murine fibroblasts (NIH 3T3), breast (MCF-7) and cervical cancer (CCl-2/Hela) cell lines. RESULTS: SL and EG were based on aromatic-polycarbonate matrix, whereas EL consisted of an aromatic polycarbonate-polyethylene terepthalate copolymer. A significant induction of cell death and a concurrent decrease in cell proliferation was noted in the EG eluent-treated cells. Moreover, EG eluent significantly reduced the levels of the estrogen signaling associated gene pS2, specifically in MCF7 cells, suggesting that cell death induced by this material is associated with downregulation of estrogen signaling pathways. Even though oxidative stress mechanisms were equally activated by all eluents, the EG eluents induced expression of apoptosis inducing factor (AIF) and reduced Bcl-xL protein levels. SIGNIFICANCE: Some polycarbonate-based composite brackets when exposed to water release substances than activate mitochondrial apoptosis.
Resumo:
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Resumo:
INTRODUCTION: SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs. METHODS: In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays. RESULTS: SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-beta receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues. CONCLUSIONS: Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.
Resumo:
Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).
Resumo:
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.
Resumo:
The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO2 partial pressure (pCO2) with higher N2 fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO2(150 and 900 µatm) and light (50 and 200 µmol photons m-2 s-1) on TrichodesmiumIMS101. We expand on a complementary study that demonstrated that while elevated pCO2 enhanced N2 fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO2 and light controlled the operation of the CO2-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO2 and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N2 fixation and growth at elevated pCO2 and light. We suggest that changes in the redox state of the photosynthetic electron transportchain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enableTrichodesmium to flourish in future surface oceans characterized by elevated pCO2, higher temperatures, and high light.
Resumo:
Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.
Resumo:
The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.
Resumo:
A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.
Resumo:
Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.