788 resultados para Recursive logit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographicmaps, and this topic remains an active focus of neurocomputational research. The representational capabilities and internal representations of the models are not well understood. Here, we rigorously analyze a generalization of the self-organizingmap (SOM) for processing sequential data, recursive SOM (RecSOM) (Voegtlin, 2002), as a nonautonomous dynamical system consisting of a set of fixed input maps. We argue that contractive fixed-input maps are likely to produce Markovian organizations of receptive fields on the RecSOM map. We derive bounds on parameter β (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed-input maps is guaranteed. Some generalizations of SOM contain a dynamic module responsible for processing temporal contexts as an integral part of the model. We show that Markovian topographic maps of sequential data can be produced using a simple fixed (nonadaptable) dynamic module externally feeding a standard topographic model designed to process static vectorial data of fixed dimensionality (e.g., SOM). However, by allowing trainable feedback connections, one can obtain Markovian maps with superior memory depth and topography preservation. We elaborate on the importance of non-Markovian organizations in topographic maps of sequential data. © 2006 Massachusetts Institute of Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been a considerable research activity in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, the representational capabilities and internal representations of the models are not well understood. We rigorously analyze a generalization of the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as a non-autonomous dynamical system consisting off a set of fixed input maps. We show that contractive fixed input maps are likely to produce Markovian organizations of receptive fields o the RecSOM map. We derive bounds on parameter $\beta$ (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed input maps is guaranteed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of approximation-forecasting for a function, represented by empirical data was investigated. Certain class of the functions as forecasting tools: so called RFT-transformers, – was proposed. Least Square Method and superposition are the principal composing means for the function generating. Besides, the special classes of beam dynamics with delay were introduced and investigated to get classical results regarding gradients. These results were applied to optimize the RFT-transformers. The effectiveness of the forecast was demonstrated on the empirical data from the Forex market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 05B05; secondary 62K10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G07, 60F10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G07, 62L20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a multi-equation income model which has been estimated for Canadian men and women which incorporates the effects of a number of important family background variables, including mother’s and father’s education, parents’ immigration status, their age at immigration, place of birth, language development, and learning background. Not only education, but also the individual’s tested literacy and numeracy levels are treated as intermediate outcomes which are affected by background and which, in turn, affect income. Many of the background variables are found to have important indirect effects on income which would be missed by more conventional approaches. We also find some interesting gender aspects with respect to the influences of parents’ educations on their children’s outcomes. Various policy implications of the findings are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the use of proof planning to diagnose errors in program code. In particular it looks at the errors that arise in the base cases of recursive programs produced by undergraduates. It describes two classes of error that arise in this situation. The use of test cases would catch these errors but would fail to distinguish between them. The system adapts proof critics, commonly used to patch faulty proofs, to diagnose such errors and distinguish between the two classes. It has been implemented in Lambda-clam, a proof planning system, and applied successfully to a small set of examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge on human behaviour in emergency is crucial to increase the safety of buildings and transportation systems. Decision making during evacuations implies different choices, of which one of the most important concerns the escape route. The choice of a route may involve local decisions between alternative exits from an enclosed environment. This work investigates the influence of environmental (presence of smoke, emergency lighting and distance of exit) and social factors (interaction with evacuees close to the exits and with those near the decision-maker) on local exit choice. This goal is pursued using an online stated preference survey carried out making use of non-immersive virtual reality. A sample of 1,503 participants is obtained and a Mixed Logit Model is calibrated using these data. The model shows that presence of smoke, emergency lighting, distance of exit, number of evacuees near the exits and the decision-maker, and flow of evacuees through the exits significantly affect local exit choice. Moreover, the model points out that decision making is affected by a high degree of behavioural uncertainty. Our findings support the improvement of evacuation models and the accuracy of their results, which can assist in designing and managing building and transportation systems. The main contribution of this work is to enrich the understanding of how local exit choices are made and how behavioural uncertainty affects these choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taller 9: Modelos Logit y Probit Econometría 06216. Elaborado por el profesor Julio César Alonso Cifuentes de la Facultad de Ciencias Administrativas y Económicas – Universidad Icesi. Contiene preguntas fórmulas y respuestas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.