989 resultados para Rail Track Design
Resumo:
A road bridge containing disused flatbed rail wagons as the primary deck superstructure was performance tested in a low volume, high axle load traffic road in Queensland, Australia; some key results are presented in this paper. A fully laden truck of total weight 28.88 % of the serviceability design load prescribed in the Australian bridge code was used; its wheel positions were accurately captured using a high speed camera and synchronised with the real‐time deflections and strains measured at the critical members of the flat rail wagons. The strains remained well below the yield and narrated the existence of composite action between the reinforced concrete slab pavement and the wagon deck. A three dimensional grillage model was developed and calibrated using the test data, which established the structural adequacy of the rail wagons and the positive contribution of the reinforced concrete slab pavement to resist high axle traffic loads on a single lane bridge in the low volume roads network.
Resumo:
New knowledge has raised a concern about the cost-ineffective design methods and the true performance of railroad prestressed concrete ties. Because of previous knowledge deficiencies, railway civil and track engineers have been aware of the conservative design methods for structural components in any railway track that rely on allowable stresses and material strength reductions. In particular, railway sleeper (or railroad tie) is an important component of railway tracks and is commonly made of prestressed concrete. The existing code for designing such components makes use of the permissible stress design concept, whereas the fiber stresses over cross sections at initial and final stages are limited by some empirical values. It is believed that the concrete ties complying with the permissible stress concept possess unduly untapped fracture toughness, based on a number of proven experiments and field data. Collaborative research run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete ties that were designed using the existing design code. The findings have led to the development of a new limit-states design concept. This paper highlights the conventional and the new limit-states design philosophies and their implication to both the railway community and the public. © 2011 American Society of Civil Engineers.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
Ratchetting failure of railhead material adjacent to endpost which is placed in the air gap between the two rail ends at insulated rail joints causes significant economic problems to the railway operators who rely on the proper functioning of these joints for train control using the signalling track circuitry. The ratchetting failure is a localised problem and is very difficult to predict even when complex analytical methods are employed. This paper presents a novel experimental technique that enables measurement of the progressive ratchetting. A special purpose test rig was developed for this purpose and commissioned by the Centre for Railway Engineering at Central Queensland University. The rig also provides the capability of testing of the wheel/rail rolling contract conditions. The results provide confidence that accurate measurement of the localised failure of railhead material can be achieved using the test rig.
Resumo:
When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.
Resumo:
Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.
Resumo:
Railroad corridors contain large number of Insulated Rail Joints (IRJs) that act as safety critical elements in the circuitries of the signaling and broken rail identification systems. IRJs are regarded as sources of excitation for the passage of loaded wheels leading to high impact forces; these forces in turn cause dips, cross levels and twists to the railroad geometry in close proximity to the sections containing the IRJs in addition to the local damages to the railhead of the IRJs. Therefore, a systematic monitoring of the IRJs in railroad is prudent to mitigate potential risk of their sudden failure (e.g., broken tie plates) under the traffic. This paper presents a simple method of periodic recording of images using time-lapse photography and total station surveying measurements to understand the ongoing deterioration of the IRJs and their surroundings. Over a 500 day period, data were collected to examine the trends in narrowing of the joint gap due to plastic deformation the railhead edges and the dips, cross levels and twists caused to the railroad geometry due to the settlement of ties (sleepers) around the IRJs. The results reflect that the average progressive settlement beneath the IRJs is larger than that under the continuously welded rail, which leads to excessive deviation of railroad profile, cross levels and twists.
Resumo:
A technologically innovative study was undertaken across two suburbs in Brisbane, Australia, to assess socioeconomic differences in women's use of the local environment for work, recreation, and physical activity. Mothers from high and low socioeconomic suburbs were instructed to continue with usual daily routines, and to use mobile phone applications (Facebook Places, Twitter, and Foursquare) on their mobile phones to ‘check-in’ at each location and destination they reached during a one-week period. These smartphone applications are able to track travel logistics via built-in geographical information systems (GIS), which record participants’ points of latitude and longitude at each destination they reach. Location data were downloaded to Google Earth and excel for analysis. Women provided additional qualitative data via text regarding the reasons and social contexts of their travel. We analysed 2183 ‘check-ins’ for 54 women in this pilot study to gain quantitative, qualitative, and spatial data on human-environment interactions. Data was gathered on distances travelled, mode of transport, reason for travel, social context of travel, and categorised in terms of physical activity type – walking, running, sports, gym, cycling, or playing in the park. We found that the women in both suburbs had similar daily routines with the exception of physical activity. We identified 15% of ‘check-ins’ in the lower socioeconomic group as qualifying for the physical activity category, compared with 23% in the higher socioeconomic group. This was explained by more daily walking for transport (1.7kms to 0.2kms) and less car travel each week (28.km to 48.4kms) in the higher socioeconomic suburb. We ascertained insights regarding the socio-cultural influences on these differences via additional qualitative data. We discuss the benefits and limitations of using new technologies and Google Earth with implications for informing future physical and social aspects of urban design, and health promotion in socioeconomically diverse cities.
Resumo:
Metrics such as passengers per square metre have been developed to define optimum or crowded rail passenger density. Whilst such metrics are important to operational procedures, service evaluation and reporting, they fail to fully capture and convey the ways in which passengers experience crowded situations. This paper reports findings from a two year study of rail passenger crowding in five Australian capital cities which involved a novel mixed-methodology including ethnography, focus groups and an online stated preference choice experiment. The resulting data address the following four fundamental research questions: 1) to what extent are Australian rail passengers concerned by crowding, 2) what conditions exacerbate feelings of crowdedness, 3) what conditions mitigate feelings of crowdedness, and 4) how can we usefully understand passengers’ experiences of crowdedness? It concludes with some observations on the significance and implications of these findings for customer service provision. The findings outlined in this paper demonstrate that the experience of crowdedness (including its tolerance) cannot be understood in isolation from other customer services issues such as interior design, quality of environment, safety and public health concerns. It is hypothesised that tolerance of crowding will increase alongside improvements to overall customer service. This was the first comprehensive study of crowding in the Australian rail industry.
Resumo:
This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
Whilst alcohol is a common feature of many social gatherings, there are numerous immediate and long-term health and social harms associated with its abuse. Alcohol consumption is the world’s third largest risk factor for disease and disability with almost 4% of all deaths worldwide attributed to alcohol. Not surprisingly, alcohol use and binge drinking by young people is of particular concern with Australian data reporting that 39% of young people (18-19yrs) admitted drinking at least weekly and 32% drank to levels that put them at risk of alcohol-related harm. The growing market penetration and connectivity of smartphones may be an opportunities for innovation in promoting health-related self-management of substance use. However, little is known about how best to harness and optimise this technology for health-related intervention and behaviour change. This paper explores the utility and interface of smartphone technology as a health intervention tool to monitor and moderate alcohol use. A review of the psychological health applications of this technology will be presented along with the findings of a series of focus groups, surveys and behavioural field trials of several drink-monitoring applications. Qualitative and quantitative data will be presented on the perceptions, preferences and utility of the design, usability and functionality of smartphone apps to monitoring and moderate alcohol use. How these findings have shaped the development and evolution of the OnTrack app will be specifically discussed, along with future directions and applications of this technology in health intervention, prevention and promotion.
On-road driving studies to understand why drivers behave as they do at regional rail level crossings
Resumo:
Improving safety at rail level crossings is an important part of both road and rail safety strategies. While low in number, crashes between vehicles and trains at level crossings are catastrophic events typically involving multiple fatalities and serious injuries. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles with eye and head tracking, provide researchers with the opportunity to further understand driver behaviour at such crossings in ways not previously possible. This paper describes a study conducted to further understand the factors that shape driver behaviour at rail level crossings using instrumented vehicles. Twenty-two participants drove an On-Road Test Vehicle (ORTeV) on a predefined route in regional Victoria with a mix of both active (flashing lights with/without boom barriers) and passively controlled (stop, give way) crossings. Data collected included driving performance data, head checks, and interview data to capture driver strategies. The data from an integrated suite of methods demonstrated clearly how behaviour differs at active and passive level crossings, particularly for inexperienced drivers. For example, the head check data clearly show the reliance and expectancies of inexperienced drivers for active warnings even when approaching passively controlled crossings. These studies provide very novel and unique insights into how level crossing design and warnings shape driver behaviour.
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
This paper discusses the methodology and design of the Cooperative Research Centre for Rail Innovation’s national low-cost level crossing trial programme currently being conducted in Australia. Three suppliers of innovative low-cost level crossing warning devices were chosen through a tendering and evaluation process. The paper outlines the acceptance criteria that were used to select the suppliers and describes the different types of train detection technologies and innovative cost- reduction solutions that are being tested as part of the trial. The trial is being hosted by three major railways in three different regions in Australia, where systems from the three suppliers have been installed parallel to a baseline conventional track-circuit based level crossing at each site. The paper discusses our experience to date, the trialling process and the challenges that the project has confronted in order to develop a nationally consistent trialling programme.