958 resultados para REGULATORY CELLS
Resumo:
Rifampin-resistant Pseudomonas fluorescens CHA0-Rif and mutants in which the regulatory gene algU (encoding sigma factor sigma(E)) or gacA (encoding a global regulator of secondary metabolism) was inactivated were compared for persistence in three nonsterile soils. Functional algU and (particularly) gacA were needed for CHA0-Rif to maintain cell culturability in soil.
Resumo:
Increased levels of oxidized low-density lipoproteins (oxLDL) contribute to the increased risk for atherosclerosis, which persists even after adjusting for traditional risk factors, among patients with ESRD. Regulatory T cells (CD4+/CD25+ Tregs), which down-regulate T cell responses to foreign and self-antigens, are protective in murine atherogenesis, but whether similar immunoregulation occurs in humans with ESRD is unknown. Because cellular defense systems against oxLDL involve proteolytic degradation, the authors investigated the role of oxLDL on proteasome activity of CD4+/CD25+ Tregs in patients with ESRD. CD4+/CD25+ Tregs isolated from uremic patients' peripheral blood, especially that of chronically hemodialyzed patients, failed to suppress cell proliferation, exhibited cell-cycle arrest, and entered apoptosis by altering proteasome activity. Treating CD4+/CD25+ Tregs with oxLDL or uremic serum ex vivo decreased the number and suppressive capacity of CD4+/CD25+ Tregs. In vitro, oxLDL promoted the accumulation of p27Kip1, the cyclin-dependent kinase inhibitor responsible for G1 cell cycle arrest, and increased apoptosis in a time- and concentration-dependent manner. In summary, proteasome inhibition by oxLDL leads to cell cycle arrest and apoptosis, dramatically affecting the number and suppressive capacity of CD4+/CD25+ Tregs in chronically hemodialyzed patients. This response may contribute to the immune dysfunction, microinflammation, and atherogenesis observed in patients with ESRD.
Resumo:
Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.
Resumo:
A comprehensive understanding of the complex, autologous cellular interactions and regulatory mechanisms that occur during normal dendritic cell (DC)-stimulated immune responses is critical to optimizing DC-based immunotherapy. We have found that mature, immunogenic human monocyte-derived DCs (moDCs) up-regulate the immune-inhibitory enzyme, indoleamine 2,3-dioxygenase (IDO). Under stringent autologous culture conditions without exogenous cytokines, mature moDCs expand regulatory T cells (Tregs) by an IDO-dependent mechanism. The priming of resting T cells with autologous, IDO-expressing, mature moDCs results in up to 10-fold expansion of CD4(+)CD25(bright)Foxp3(+)CD127(neg) Tregs. Treg expansion requires moDC contact, CD80/CD86 ligation, and endogenous interleukin-2. Cytofluorographically sorted CD4(+) CD25(bright)Foxp3(+) Tregs inhibit as much as 80% to 90% of DC-stimulated autologous and allogeneic T-cell proliferation, in a dose-dependent manner at Treg:T-cell ratios of 1:1, 1:5, and as low as 1:25. CD4(+)CD25(bright)Foxp3(+) Tregs also suppress the generation of cytotoxic T lymphocytes specific for the Wilms tumor antigen 1, resulting in more than an 80% decrease in specific target cell lysis. Suppression by Tregs is both contact-dependent and transforming growth factor-beta-mediated. Although mature moDCs can generate Tregs by this IDO-dependent mechanism to limit otherwise unrestrained immune responses, inhibition of this counter-regulatory pathway should also prove useful in sustaining responses stimulated by DC-based immunotherapy.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
CD4+CD25+ regulatory T cells (Tregs) play a critical role in the prevention of autoimmune diseases as well as in the induction and maintenance of dominant tolerance in transplantation models. While their suppressive function has been extensively studied in vitro, their homeostasis and mechanisms of immunoregulation still remain to be clarifi ed in vivo. Using a murine adoptive transfer and skin allograft model, we analysed the expansion, effector function and traffi cking of effector T cells in the presence or absence of donor-specifi c Tregs. Although hyporesponsive to allogeneic and polyclonal stimulation in vitro, transferred Tregs survived and expanded, in response to an allograft in vivo. When co-transferred with naive CD4+CD25- effector T cells, they specifi cally prevented donor but not 3rd party allograft rejection by inhibiting the production of effector cytokines rather than the proliferation of effector T cells in response to alloantigens. The co-transfer of donor-specifi c Tregs did not affect the homing of effector T cells towards the graft draining lymph nodes, but it markedly reduced the infi ltration of the allograft by these pathogenic cells. Furthermore, in recipients where donor-specifi c transplantation tolerance was induced, Tregs preferentially accumulated in the allograft draining lymph nodes and within the grafted skin itself. Taken together, our results suggest that the suppression of graft rejection is an active process that involves the persistent presence of Tregs at the site of antigenic challenge.
Resumo:
Purpose: The mechanisms by which CD4+CD25+Foxp3+ T cells (Tregs) regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer and skin transplantation model, we analyzed the in vivo expansion, effector function and trafficking of effector T cells and donor-specific Tregs, in response to an allograft. Methods and materials: Antigen-specific Tregs were generated and expanded in vitro by culturing freshly isolated Tregs from BALB/c mice (H2d) with syngeneic dendritic cells pulsed with an allopeptide (here the Kb peptide derived from the MHC class I molecule of allogeneic H2b mice). Fluorescent-labelled CD4+CD25- naive T cells and donor-antigen-specific Tregs were transferred alone or coinjected into syngeneic BALB/c-Nude recipients transplanted with allogeneic C57BL/6xBALB/c donor skin. Results: As opposed to their in vitro hyporesponsiveness, Tregs divided in vivo, migrated and accumulated in the allograft draining lymph nodes (drLN) and within the graft. The co-transfer of Tregs did not modify the early proliferation and homing of CD4+CD25- T cells to secondary lymphoid organs. But, in the presence of Tregs, effector T cells produced significantly less IFN- and IL-2 effector cytokines, while higher amounts of IL-10 were detected in the spleen and drLN of these mice. Furthermore, time-course studies showed that Tregs were recruited into the allograft at a very early stage posttransplantation and prevented infiltration by effector T cells. Conclusion: Overall, our results suggest that suppression of graft rejection involves the early recruitment of donor-specific Tregs at the sites of antigenic challenge and that Tregs mainly regulate the effector arm of T cell alloresponses.
Resumo:
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells. The role of its antagonistic homolog CTLA-4, however, remains a topic of debate. To address this topic, we investigated the thymic development of T cells in the presence and absence of CTLA-4 in a T-cell receptor (TCR) transgenic mouse model specific for the myelin basic protein peptide Ac1-9. We reveal that CTLA-4 is expressed in the corticomedullary region of the thymus. Its absence alters the response of CD4(+)CD8(-) thymocytes to self-antigen recognition, which affects the quantity of the Treg cells generated and broadens the repertoire of peripheral Tconv cells. T-cell repertoire alteration after deletion of CTLA-4 results from changes in TCR Vα and Jα segment selection as well as CDR3α composition in Tconv and Treg cells. CTLA-4, therefore, regulates the early development of self-reactive T cells in the thymus and plays a key role in central tolerance.
Resumo:
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.
Resumo:
Atherosclerosis, which is influenced by both traditional and nontraditional cardiovascular risk factors and has been characterized as an inflammatory process, is considered to be the main cause of the elevated cardiovascular risk associated with chronic kidney disease. The inflammatory component of atherosclerosis can be separated into an innate immune response involving monocytes and macrophages that respond to the excessive uptake of lipoproteins and an adaptive immune response that involves antigen-specific T cells. Concurrent with the influx of immune cells to the site of atherosclerotic lesion, the role of the adaptive immune response gradually increases. One of those cells are represented by the CD4+/CD25+ Tregs, which play indispensable roles in the maintenance of natural self-tolerance and negative control of pathological, as well as physiological, immune responses. Altered self-antigens such as oxidized LDLs may induce the development of CD4+/CD25+ Tregs with atheroprotective properties. However, atherosclerosis may be promoted by an imbalance between regulatory and pathogenic immunity that may be represented by the low expression of the forkhead box transcription factor (Foxp3) in CD4+/CD25+ Tregs. Such a defect may break immunologic tolerance and alter both specific and bystander immune suppression, leading to exacerbation of plaque development. Patients with end-stage kidney disease (ESKD) display a cellular immune dysfunction and accelerated atherosclerosis. Uremic solutes that accumulate during ESKD may be involved in these processes. In patients with ESKD and especially in those that are chronically hemodialyzed, oxidative stress induced by oxidized LDLs may increase CD4+/CD25+ Treg sensitivity to Fas-mediated apoptosis as a consequence of specific dysregulation of IL-2 expression. This review will focus on the current state of knowledge regarding the influence of CD4+/CD25+ Tregs on atherogenesis in patients with ESKD, and the potential effect of statins on the circulating number and the functional properties of these cells.
Resumo:
Regulatory T cells control immune responses to self- and foreign-antigens and play a major role in maintaining the balance between immunity and tolerance. This article reviews recent key developments in the field of CD4+CD25+Foxp3+ regulatory T (TREG) cells. It presents their characteristics and describes their range of activity and mechanisms of action. Some models of diseases triggered by the imbalance between TREG cells and effector pathogenic T cells are described and their potential therapeutic applications in humans are outlined.
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.
Resumo:
Purpose: Current experimental data suggest that CD4+CD25+Foxp3+regulatory T cells (Tregs) based immunotherapy would be of greatinterest to promote donor-specific immune tolerance in transplantation(Tx). Whether and how adoptive transfer of Tregs could be bestcombined with current immunosuppressive regimens in clinicalsettings remains to be defined. Using an experimental Tx model,we had previously shown that the transfer of antigen-specific Tregspromoted long-term skin allograft acceptance in lymphopenic mice,in the absence of any immunosuppressive drug. However, allograftsurvival was only slightly prolonged when Tregs were transferredalone into non-lymphopenic mice, suggesting that in more stringentconditions such as in clinical settings adjuvant therapies may beneeded to effectively control alloreactive T cells (Teff).Methods and Materials: Here we have investigated the effects ofvarious immunosuppressive drugs on the survival, proliferation andeffector function of Teff and Tregs in response to alloantigens in in vitroassays and in our in vivo Tx model.Results: Teff proliferation was inhibited in a dose-dependant mannerby rapamycin and cyclosporine A, while anti-CD154 only marginallyaffected Teff proliferation and survival in vitro. Rapamycin promotedapoptosis of Teff as compared to Tregs that were more resistant underthe same culture conditions. In vivo, the transfer of donor-specificTregs could be advantageously combined with rapamycin andanti-CD154 to significantly prolong MHC-mismatched skin allograftsurvival in non-lymphopenic recipients.Conclusion: Taken together, our data indicate thatimmunosuppressive drugs differentially target T-cell subsets and couldpromote Tregs expansion and/or function while controlling the Teff pool.
Resumo:
Résumé : La majorité des souches de souris de laboratoire sont résistantes à l'infection par le parasite Leishmania major (L. major). A l'opposé, les souris de la souche BALB développent une maladie évolutive. La résistance et la sensibilité sont corrélées avec l'apparition de lymphocytes T CD4+ spécifiques du parasite, Th1 (de l'anglais T helper) ou Th2 respectivement. La réponse aberrante Th2 chez les souris de la souche BALB/c dépend, au moins en partie, de façon critique de la production rapide d'IL-4 suite à l'infection. Ce pic précoce d'IL-4 est produit par une population de lymphocytes T CD4+ restreinte aux molécules du MHC de classe II, exprimant les chaînes du récepteur des cellules T Vß4-Va8. Ces lymphocytes sont spécifiques d'un épitope de l'homologue Leishmania de la molécule RACK1 des mammifères, appelée LACK. Il a été clairement démontré que l'IL-4 rapidement produite par ces cellules T CD4+ Vß4-Va8 induit la maturation Th2 responsable de la sensibilité vis-à-vis de L. major. Des expériences ont été entreprises pour étudier la régulation de cette réponse précoce d'IL-4. Dans ce travail, nous avons documenté, dans les cellules provenant des ganglions de souris sensibles infectées par L. major, une augmentation de la transcription de l'ARNm de l'IL-2 qui précède la réponse précoce d'IL-4. La neutralisation de l'IL-2 durant les premiers jours d'infection induit la maturation des cellules Thl et la résistance vis-à-vis de L. major. Ces effets de l'anticorps anti-IL-2 neutralisant sont liés à sa capacité d'interférer avec la transcription rapide d'IL-4 des cellules CD4+ réactives à l'antigène LACK. Une augmentation similaire d'IL-2 survient chez les souris résistantes C57BL/6 qui sont incapables de générer la réponse précoce d'IL-4. Cependant, la protéiné LACK induit une transcription précoce d'IL-2 uniquement chez les souris sensibles. Des expériences de reconstitution utilisant des souris C.B.-17 SCID et des cellules T CD4+ réactives à LACK provenant de souris BALB/c IL-2-~démontrent un mode d'action autocrine de l'IL-2 sur la régulation de la réponse précoce d'IL4. Par conséquent, chez les souris C57BL/6, l'absence du pic précoce d'ARNm de l'IL-4 important pour la progression de la maladie paraît liée à l'incapacité des cellules T CD4+ réactives à LACK de produire de l'IL-2. Un rôle dans le contrôle de la production précoce d'IL-4 par les cellules T régulatrices CD4+CD25+ a été investigué en déplétant in vivo cette population de cellules. La déplétion induit une élévation du pic précoce de l'ARNm de l'IL-4 dans les ganglions drainant de souris BALB/c, ainsi qu'une exacerbation du cours de la maladie avec des taux augmentés d'IL-4 dans les ganglions. La réponse rapide d'IL-2 vis-à-vis de L. major est aussi significativement augmentée chez les souris BALB/c déplétées en cellules CD4+CD25+. De plus, nous avons démontré que le transfert de 10puissance(7) cellules provenant de la rate de souris BALB/c déplétées en cellules T régulatrices CD4+CD25+ rend les souris SCID sensibles à l'infection et permet la différentiation Th2. Au contraire, les souris SCID reconstituées avec 10' cellules de la rate de souris BALB/c contrôle sont résistantes à infection par L. major et développent une réponse Thl. Chez les souris SCID reconstituées avec des cellules de rate déplétées en cellules exprimant le marqueur CD25, le traitement avec un anticorps neutralisant l'IL-4 au moment de l'infection par L. major prévient le développement de la réponse Th2 et rend ces souris résistantes à l'infection. Ces résultats démontrent que les cellules T régulatrices CD4+CD25+ jouent un rôle dans la régulation du pic précoce d'IL-4 responsable du développement cellulaire Th2 dans ce modèle d'infection. Summary Mice from most strains are resistant to infection with Leishmania major (L. major). In contrast, BALB mice develop progressive disease. Resistance and susceptibility result from parasite-specific CD4+ Thl or Th2 cells, respectively. The aberrant Th2 response in BALB/c mice depends, at least in part, upon the production of IL-4 early after infection. The CD4+ T cells responsible for this early IL-4 response to L. major express a restricted TCR repertoire (Vß4-Va8) and respond to an I-Ad-restricted epitope of the Leishmania homologue of mammalian RACK1, designated LACK. The role of these cells and the IL-4 they produce for subsequent Th2 cell development and disease progression in BALB/c mice was demonstrated. Experiments have been undertaken to study the regulation of the rapid IL-4 production to L. major. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Thl cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in LACKreactive CD4+ cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4+ T cells from IL-2-/- BALB/c mice showed that triggering of the early IL-4 response required autocrine IL2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4+ T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. The rapid IL-2 response to L. major is also significantly enhanced in BALB/c mice depleted of CD4+CD25+ cells. We further showed that transfer of 10~ BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10 control BALB/c spleen cells were resistant to infection with L. major and developed a Thl response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.