772 resultados para RECOGNITION TEMPLATE
Resumo:
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.
Resumo:
It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an understanding of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.
Resumo:
The traditional explanation for interspecific plumage colour variation in birds is that colour differences between species are adaptations to minimize the risk of hybridization. Under this explanation, colour differences between closely related species of birds represent reproductive character displacement. An alternative explanation is that interspecific variation in plumage colour is an adaptive response to variation in light environments across habitats. Under this explanation, differences in colour between closely related species are a product of selection on signal efficiency. We use a comparative approach to examine these two hypotheses, testing the effects of sympatry and habitat use, respectively, on divergence in male plumage colour. Contrary to the prediction of the Species Isolation Hypothesis, we find no evidence that sympatric pairs of species are consistently more divergent in coloration than are allopatric pairs of species. However, in agreement with the Light Environment Hypothesis, we find significant associations between plumage coloration and habitat use. All of these results remain qualitatively unchanged irrespective of the statistical methodology used to compare reflectance spectra, the body regions used in the analyses, or the exclusion of areas of plumage not used in sexual displays. Our results suggest that, in general, interspecific variation in plumage colour among birds is more strongly influenced by the signalling environment than by the risk of hybridization.
Resumo:
The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A conserved helical peptide vaccine candidate from the M protein of group A streptococci, p145, has been described. Minimal epitopes within p145 have been defined and an epitope recognized by protective antibodies, but not by autoreactive T cells, has been identified. When administered to mice, p145 has low immunogenicity. Many boosts of peptide are required to achieve a high antibody titre (> 12 800). To attempt to overcome this low immunogenicity, lipid-core peptide technology was employed. Lipid-core peptides (LCP) consist of an oligomeric polylysine core, with multiple copies of the peptide of choice, conjugated to a series of lipoamino acids, which acts as an anchor for the antigen. Seven different LCP constructs based on the p145 peptide sequence were synthesized (LCP1-->LCP7) and the immunogenicity of the compounds examined. The most immunogenic constructs contained the longest alkyl side-chains. The number of lipoamino acids in the constructs affected the immunogenicity and spacing between the alkyl side-chains increased immunogenicity. An increase in immunogenicity (enzyme-linked immunosorbent assay (ELISA) titres) of up to 100-fold was demonstrated using this technology and some constructs without adjuvant were more immunogenic than p145 administered with complete Freund's adjuvant (CFA). The fine specificity of the induced antibody response differed for the different constructs but one construct, LCP4, induced antibodies of identical fine specificity to those found in endemic human serum. Opsonic activity of LCP4 antisera was more than double that of p145 antisera. These data show the potential for LCP technology to both enhance immunogenicity of complex peptides and to focus the immune response towards or away from critical epitopes.
Resumo:
Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance-covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.
Resumo:
HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a hi,,h frequency in all human populations, and vet they only differ by one residue on the alpha2 helix (B*4402 Aspl56-->B*4403 Leu156) CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphisin at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B 4403 modifies both peptide repertoire and T cell recognition, and is reflected lit the paradoxically powerful alloreactivity that occurs across this minimal mismatch. The findings suggest that these closely related class I genes are maintained lit diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.
Resumo:
Nos equinos, um grande número de eventos das fases iniciais do desenvolvimento embrionário são únicos e distintos daqueles que se verificam em outras espécies, incluindo os críticos mas pouco esclarecidos mecanismos de reconhecimento materno da gestação. Este processo fisiológico, através do qual o concepto sinaliza a sua presença ao organismo materno assegurando a manutenção do corpo lúteo (CL) primário e, consequentemente, dos níveis de progesterona necessários à sobrevivência e desenvolvimento do embrião, está pouco esclarecido. De facto, ainda não é claro qual o sinal embrionário primário que assegura a manutenção do CL nos equinos e, apesar do número de potenciais factores que contribuem para o reconhecimento e manutenção da gestação não parar de crescer, nenhum é capaz por si só de satisfazer todos os critérios que caracterizam um factor anti-luteolítico ou luteostático. Por outro lado, é geralmente aceite o conceito de que o reconhecimento materno da gestação é um fenómeno fisiológico de extrema importância e que qualquer falha, quer no envio quer na recepção do sinal apropriado, pode levar a morte embrionária. De facto, a perda de gestações durante ou à volta do espaço de tempo em que ocorre o reconhecimento materno da gestação (i.e dias 10-16 após a ovulação) é comum mas imprevisível (e, portanto, difícil de controlar e prevenir) na prática clínica, sendo uma causa de grandes perdas económicas.
Resumo:
The present work deals with preliminary studies concerning a new synthesis approach to prepare SAPO materials with AEL structure and evaluate their catalytic behavior in the hydroisomerization of long paraffins. The new SAPO-11 catalysts were synthesized with the help of a small amine (methylamine, MA) added during the preparation of the initial gel. As MA incorporates into the structure of the final materials, it contributes, together with DPA (dipropylamine), to an increase in Si incorporation as isolated species, which results in Bronsted acid sites. Thus, this new and original synthesis strategy allows to obtain materials with enhanced Bronsted acidity when compared with free MA materials. The catalysts were tested in n-decane hydroisomerization (n-decane was used as a model molecule) and confirmed the effect of MA on the acidic properties of the catalysts. The samples synthesized with MA present a higher number of acid sites that increase the catalytic conversion but have a negative effect in the isomerization selectivity, i.e. a more significant amount of cracking products is formed.
Resumo:
HENRE II (Higher Education Network for Radiography in Europe)
Resumo:
Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações