921 resultados para RAY-ABSORPTION SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. In particular, the photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used technique.[1,2] Focusing on the process of photosynthesis, it relies upon the efficient absorption and conversion of the radiant energy from the Sun. Chlorophylls and carotenoids are the main players in the process. Photosynthetic pigments are typically arranged in a highly organized fashion to constitute antennas and reaction centers, supramolecular devices where light harvesting and charge separation take place. The very early steps in the photosynthetic process take place after the absorption of a photon by an antenna system, which harvests light and eventually delivers it to the reaction center. In order to compete with internal conversion, intersystem crossing, and fluorescence, which inevitably lead to energy loss, the energy and electron transfer processes that fix the excited-state energy in photosynthesis must be extremely fast. In order to investigate these events, ultrafast techniques down to a sub-100 fs resolution must be used. In this way, energy migration within the system as well as the formation of new chemical species such as charge-separated states can be tracked in real time. This can be achieved by making use of ultrafast transient absorption spectroscopy. The basic principles of this notable technique, instrumentation, and some recent applications to photosynthetic systems[3] will be described. Acknowledgements M. Moreno Oliva thanks the MINECO for a “Juan de la Cierva-Incorporación” research contract. References [1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer and E. Riedle, Appl. Phys. B, 96, 215 – 231 (2009). [2] R. Berera, R. van Grondelle and J.T.M. Kennis, Photosynth. Res., 101, 105 – 118 (2009). [3] T. Nikkonen, M. Moreno Oliva, A. Kahnt, M. Muuronen, J. Helaja and D.M. Guldi, Chem. Eur. J., 21, 590 – 600 (2015).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using differential x-ray absorption spectroscopy (DiffXAS) we have measured and quantified the intrinsic, atomic-scale magnetostriction of Fe(81)Ga(19). By exploiting the chemical selectivity of DiffXAS, the Fe and Ga local environments have been assessed individually. The enhanced magnetostriction induced by the addition of Ga to Fe was found to originate from the Ga environment, where lambda(gamma,2)(approximate to (3/2)lambda(100)) is 390 +/- 40 ppm. In this environment, < 001 > Ga-Ga pair defects were found to exist, which mediate the magnetostriction by inducing large strains in the surrounding Ga-Fe bonds. For the first time, intrinsic, chemically selective magnetostrictive strain has been measured and quantified at the atomic level, allowing true comparison with theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigated the temperature dependence of short and long-range ferroelectric ordering in Pb(0.55)La(0.30)TiO(3) relaxor composition. High-resolution x-ray powder diffraction measurements revealed a clear spontaneous macroscopic cubic-to-tetragonal phase transition in the PLT relaxor sample at similar to 60 K below the maximum of the dielectric constant peak (T(m)). Indeed, the x-ray diffraction (XRD) data showed that at 300 K (above T(m) but below the Burns temperature, T(B)) the long-range order structure corresponds to a macroscopic cubic symmetry, space group number 221 (Pm-3m), whereas the data collected at 20 K revealed a macroscopic tetragonal symmetry, space group number 99 (P4mm) with c/a=1.0078, that is comparable to that of a normal ferroelectric. These results show that for samples with tetragonal composition, the long-range ferroelectric order may be recovered spontaneously at cryogenics temperatures, in contrast to ferroelectric samples with rhombohedral symmetry. On the other hand, x-ray absorption spectroscopy investigations intriguingly revealed the existence of local tetragonal disorder around Ti atoms for temperatures far below T(m) and above T(B), for which the sample presents macroscopic tetragonal and cubic symmetries, respectively. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431024]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the preparation method on the structural properties of the RuO(2)-Ta(2)O(5) system was investigated. Both thin films on Ti substrates and powder samples of nominal composition Ti/RuO(2)-Ta(2)O(5) (Ru:Ta = 100:0, 90:10, 80:20, 30:70, and 0:100 at.%) were prepared through thermal decomposition of polymeric precursors (DPP). The thin films and powder samples were investigated using X-ray absorption spectroscopy (XAS). XANES analyses showed that Ru and Ta are present in the Ru(IV) and Ta(V) oxidation states. EXAFS signals of all the samples were analyzed, to obtain the average bond length (r), coordination number, and the Debye-Waller factor (sigma(2)) for each Ru-O, Ru-Ru, Ta-O nearest-neighbor. The first shell Ru-O distance was found at 1.91-1.92 angstrom with coordination number of 1.8-2.1, and at 2.01-2.02 angstrom with coordination number of 3.9-4.1. The Ta-O distance obtained for all the samples and in both modes (transmission and fluorescence) had significantly different values from the theoretical ones. The results revealed that the local structure around both the Ru and Ta sites are similar, and that they consist of distorted M-O(6) octahedra (where M = Ru or Ta). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold(III) complexes of type [AuCl2{eta(2)-RC(R'pz)(3)}]Cl [R = R' = H (1), R = CH2OH, R' = H (2) and R = H, R' = 3,5-Me-2(3), pz = pyrazol-1-yl] were supported on carbon materials (activated carbon, carbon xerogel and carbon nanotubes) and used for the oxidation of cyclohexane to cyclohexanol and cyclohexanone, with aqueous H2O2, under mild conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (•O2 -), and hydroxyl radical (•OH). The most harmful of these compounds is •OH, which is only formed in cells in the presence of redox-cycling transition metals, such as iron and copper. Bacteria have developed a number of mechanisms to cope with ROS. One of the most widespread means employed by bacteria is the DNA-binding proteins from starved cells (Dps). Dps proteins protect the cells by binding and oxidizing Fe2+, thus greatly reducing the production of •OH. The oxidized iron is stored inside the protein as an iron core. In addition, Dps proteins bind directly to DNA forming a protective coating that shields DNA from harmful agents. Moreover, Dps proteins have been found to elicit other protective functions in cells and to participate in bacterial virulence. Dps proteins are of special importance to Streptococci owing to the lack of catalase in this genus of bacteria.This study was focused on structural and functional characterization of streptococcal Dpslike peroxide resistance (Dpr) proteins. Initially, crystal structures of Streptococcus pyogenes Dpr were determined. The data confirmed the presence of a di-metal ferroxidase center (FOC) in Dpr proteins and revealed the presence of a novel N-terminal helix as well as a surface metal-binding site. The crystal structures of Streptococcus suis Dpr complexed with transition metals demonstrated the metal specificity of the FOC. Solution binding studies also indicated the presence of a di-metal FOC. These results suggested a possible role for Dpr in the detoxification of various metals. Iron was found to mineralize inside the protein as ferrihydrite based on X-ray absorption spectroscopy data. The iron core was found to exhibit clear superparamagnetic behaviour using magnetic and Mössbauer measurements. The results from this study are expected to further increase our understanding on the binding, oxidation, and mineralization of iron and other metals in Dpr proteins. In particular, the structural and magnetic properties of the iron core can form a basis for potential new applications in nanotechnology. From the streptococcal viewpoint, the results would help in understanding better the complicated picture of bacterial pathogenesis. Dpr proteins may also provide a novel target for drug design due to their tight involvement in bacterial virulence.