981 resultados para Quantum Electrodynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a classical limit describing the interacting particles in a second-quantized theory of identical particles with bosonic symmetry is proved. This limit exists in addition to the previously established classical limit with a classical field behavior, showing that the limit h -> 0 of the theory is not unique. An analogous result is valid for a free massive scalar field: two distinct classical limits are proved to exist, describing a system of particles or a classical field. The introduction of local operators in order to represent kinematical properties of interest is shown to break the permutation symmetry under some localizability conditions, allowing the study of individual particle properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of quantum wells, the indium segregation leads to complex potential profiles that are hardly considered in the majority of the theoretical models. The authors demonstrated that the split-operator method is useful tool for obtaining the electronic properties in these cases. Particularly, they studied the influence of the indium surface segregation in optical properties of InGaAs/GaAs quantum wells. Photoluminescence measurements were carried out for a set of InGaAs/GaAs quantum wells and compared to the results obtained theoretically via split-operator method, showing a good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An x-ray diffraction method, based on the excitation of a surface diffracted wave, is described to investigate the capping process of InAs/GaAs (001) quantum dots (QDs). It is sensitive to the tiny misorientation of (111) planes at the surface of the buffer layer on samples with exposed QDs. After capping, the misorientation occurs in the cap-layer lattice faceting the QDs and its magnitude can be as large as 10 degrees depending on the QDs growth rates, probably due to changes in the size and shape of the QDs. A slow strain release process taking place at room temperature has also been observed by monitoring the misorientation angle of the (111) planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP/6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP/6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7 +/- 0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.