995 resultados para QUANTUM SCATTERING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an n-type vertical transition bound-to-continuum Ge/SiGe quantum cascade structure utilizing electronic quantum wells in the L and Gamma valleys of the Ge layers. The optical transition levels are located in the quantum wells in the L valley. The Gamma-L intervalley scattering is used to depopulate the lower level and inject the electrons into the upper level. We also show that high quality Si1-yGey pseudosubstrate is obtained by thermal annealing of Si1-xGex/Ge/Si structure. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scattering process modeled by an imaginary potential V(I) in the wide well of an asymmetric double quantum well structure (DQWS) is used to model the electron tunneling from the narrow well. Taking V(I) approximately -5 meV, the ground resonant level lifetimes of the narrow well in the DQWS are in quantitative agreement with the experimental resonance and non-resonance tunneling times. The corresponding scattering time 66 fs is much faster than the intersubband scattering time of LO-photon emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic states and magnetotransport properties of quantum waveguides (QW's) in the presence of nonuniform magnetic fields perpendicular to the QW plane are investigated theoretically. It is found that the magnetoconductance of those structures as a function of Fermi energy exhibits stepwise variation or square-wave-like oscillations, depending on the specific distributions (both in magnitude and direction) of nonuniform magnetic fields in QW's. We have investigated the dual magnetic strip structures and three magnetic strip structures. The character of the magnetotransport is closely related to the effective magnetic potential and the energy-dispersion spectrum of electron in the structures. It is found that dispersion relations seem to be combined by different sets of dispersion curves that belong to different individual magnetic subwaveguides. The magnetic effective potential leads to the coupling of states and the substantial distortion of the original dispersion curves at the interfaces in which the abrupt change of magnetic fields appears. Magnetic scattering states are created. Only in some three magnetic strip structures, these scattering states produce the dispersion relations with oscillation structures superimposed on the bulk Landau levels. It is the oscillatory behavior in dispersions that leads to the occurrence of square-wave-like modulations in conductance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have grown a high-quality 20 period InGaAs/GaAs quantum dot superlattice with a standard structure typically used for quantum well infrared photodetector. Normal incident absorption was observed around 13-15 mu m. Potential applications for this work include high-performance quantum dot infrared detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transport in quantum coherent networks (interacting quantum waveguide arrays) is investigated theoretically with use of the scattering-matrix method. The scattering matrix for the basic unit of networks, the cross junction with Square or rounded corners, is derived using the mode-matching technique, The overall scattering matrix for the network is obtained by the composition of the scattering matrices associated with each unit of the network, For a uniform network, the transmission spectra are calculated in the single-mode regime and an found notably dependent on the junction geometry. Small reflection for the input terminal and uniform output for some output ports are obtained, which means that the quantum coherent network can be used as a distributing net for the electron waves. Cross junctions with rounded corners of large radii are found to play a negative role in the device application of quantum coherent networks. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical analysis of a quantum directional coupler based on Pi-shaped electron waveguides is presented with use of the scattering-matrix method. After the optimization of the device parameters, uniform output for the two output ports and high directivity are obtained within a wide range of the electron momenta. The electron transfer in the device is found more efficient than that in the previously proposed structures. The study of the shape-dependence of transmission for the device shows that the device structure with smooth boundaries exhibits a much better performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transfer matrix method is presented for the study of electron conduction in a quantum waveguide with soft wall lateral confinement. By transforming the two-dimensional Schrodinger equation into a set of second order ordinary differential equations, the total transfer matrix is obtained and the scattering probability amplitudes are calculated. The proposed method is applied to the evaluation of the electron transmission in two types of cavity structure with finite-height square-well confinement. The results obtained by our method, which are found to be in excellent agreement with those from another transfer matrix method, suggest that the infinite square-well potential is a good approximation to finite-height square-well confinement for electrons propagating in the ground transverse mode, but softening of the walls has an obvious effect on the electron transmission and mode-mixing for propagating in the excited transverse mode. (C) 1996 American Institute of Physics.