999 resultados para QCD spectral sum rules


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symmetry restrictions on Raman selection rules can be obtained, quite generally, by considering a Raman allowed transition as the result of two successive dipole allowed transitions, and imposing the usual symmetry restrictions on the dipole transitions. This leads to the same results as the more familiar polarizability theory, but the vibration-rotation selection rules are easier to obtain by this argument. The selection rules for symmetric top molecules involving the (+l) and (-l) components of a degenerate vibrational level with first-order Coriolis splitting are derived in this paper. It is shown that these selection rules depend on the order of the highest-fold symmetry axis Cn, being different for molecules with n=3, n=4, or n ≧ 5; moreover the selection rules are different again for molecules belonging to the point groups Dnd with n even, and Sm with 1/2m even, for which the highest-fold symmetry axes Cn and Sm are related by m=2n. Finally it is shown that an apparent anomaly between the observed Raman and infra-red vibration-rotation spectra of the allene molecule is resolved when the correct selection rules are used, and a value for the A rotational constant of allene is derived without making use of the zeta sum rule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single scattering albedo w_0l in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength l and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio w_0l(r)/w_0l(r0) of two single scattering albedo spectra is a linear function of w_0l(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum w_0l(r) via one known spectrum w_0l(r0). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-second-resolution zenith radiance measure- ments from the Atmospheric Radiation Measurement pro- gram’s new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a re- markable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol prop- erties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical con- siderations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains un- changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonnegative matrix factorization (NMF) is a widely used method for blind spectral unmixing (SU), which aims at obtaining the endmembers and corresponding fractional abundances, knowing only the collected mixing spectral data. It is noted that the abundance may be sparse (i.e., the endmembers may be with sparse distributions) and sparse NMF tends to lead to a unique result, so it is intuitive and meaningful to constrain NMF with sparseness for solving SU. However, due to the abundance sum-to-one constraint in SU, the traditional sparseness measured by L0/L1-norm is not an effective constraint any more. A novel measure (termed as S-measure) of sparseness using higher order norms of the signal vector is proposed in this paper. It features the physical significance. By using the S-measure constraint (SMC), a gradient-based sparse NMF algorithm (termed as NMF-SMC) is proposed for solving the SU problem, where the learning rate is adaptively selected, and the endmembers and abundances are simultaneously estimated. In the proposed NMF-SMC, there is no pure index assumption and no need to know the exact sparseness degree of the abundance in prior. Yet, it does not require the preprocessing of dimension reduction in which some useful information may be lost. Experiments based on synthetic mixtures and real-world images collected by AVIRIS and HYDICE sensors are performed to evaluate the validity of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral unmixing (SU) is an emerging problem in the remote sensing image processing. Since both the endmember signatures and their abundances have nonnegative values, it is a natural choice to employ the attractive nonnegative matrix factorization (NMF) methods to solve this problem. Motivated by that the abundances are sparse, the NMF with local smoothness constraint (NMF-LSC) is proposed in this paper. In the proposed method, the smoothness constraint is utilized to impose the sparseness, instead of the traditional L1-norm which is restricted by the underlying column-sum-to-one requirement of the to the abundance matrix. Simulations show the advantages of our algorithm over the compared methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value , the average number of points in the Universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study polynomials which satisfy the same recurrence relation as the Szego{double acute} polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego{double acute} polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego{double acute} polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego{double acute} polynomials and polynomials arising from canonical spectral transformations are obtained. © 2012 American Mathematical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the set of O(\alpha_s) corrections to the double differential decay width d\Gamma_{77}/(ds_1 \, ds_2) for the process \bar{B} \to X_s \gamma \gamma originating from diagrams involving the electromagnetic dipole operator O_7. The kinematical variables s_1 and s_2 are defined as s_i=(p_b - q_i)^2/m_b^2, where p_b, q_1, q_2 are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of s_1 and s_2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass s_3=(p_b-q_1-q_2)^2/m_b^2 in the underlying triple differential decay width d\Gamma_{77}/(ds_1 ds_2 ds_3). The double differential decay width, based on this approximation, is free of infrared- and collinear singularities when combining virtual- and bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining all powers in s_3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/\epsilon singularities (which are due to collinear photon emission from the s-quark) and other concepts, which go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.