807 resultados para Program A : Business And Industry Development
Resumo:
The majority of Australian construction firms are small businesses, with 97% of general construction businesses employing less than 20 employees and 85% employing less than five employees (Lin and Mills, 2001; Lingard and Holmes, 2001). The Australian Bureau of Statistics’ definition of a small to medium enterprise was used for the purpose of this study (McLennan, 2000). This included small business employing less than twenty people and medium business employing less than 200 people. Although small to medium enterprises (SME) make up the major share of construction organisations in Australia, there is a paucity of published research in relation to occupational health and safety (OHS) issues for this group. Typically, SME organisations “are frequently undercapitalized and depend on continuous cash flow for their continued business” (Cole, 2003; 12). Research by Lin and Mills (2001) indicates that these factors influence the smaller operators’ ability and motivation to achieve high levels of OHS compared to larger firms which tend to integrate OHS into their management systems. According to Lin and Mills (2001; 137) small firms “do not feel the need to focus on OHS in their management systems, instead they often believe that the control of risk is the responsibility of employees”. This report documents findings from a qualitative research study that examined SME organisations’ views of a newly developed voluntary code of practice (VCOP), and ways in which they might implement the code in their businesses. The research also explored respondents’ awareness of current safety issues in industry in the context of their personal experiences.
Resumo:
As regulators, governments are often criticised for over‐regulating industries. This research project seeks to examine the regulation affecting the construction industry in a federal system of government. It uses a case study of the Australian system of government to focus on the question of the implications of regulation in the construction industry. Having established the extent of the regulatory environment, the research project considers the costs associated with this environment. Consequently, ways in which the regulatory burden on industry can be reduced are evaluated. The Construction Industry Business Environment project is working with industry and government agencies to improve regulatory harmonisation in Australia, and thereby reduce the regulatory burden on industry. It is found that while taxation and compliance costs are not likely to be reduced in the short term, costs arising from having to adapt to variation between regulatory regimes in a federal system of government, seem the most promising way of reducing regulatory costs. Identifying and reducing adaptive costs across jurisdictional are argued to present a novel approach to regulatory reform.
Resumo:
Construction sector policy makers have the opportunity to create improvements and develop economic, social and environmental sustainability through supply chain economics. The idea of the supply chain concept to improve firm behaviour and industry performance is not new. However there has been limited application and little or no measurement to monitor successful implementation. Often purchasing policies have been developed with sound strategic procurement principles but even these have had limited penetration in to the processes and practices of infrastructure agencies. The research reported in this paper documents an action research study currently being undertaken in the Australian construction sector which aims to explore supply chain economic policy implementation for sectoral change by two government agencies. The theory which informs this study is the emerging area of construction supply chain economics. There are five stages to the project including; demand analysis, chain analysis, government agency organizational audit, supplier strategy and strategic alignment. The overall objective is towards the development of a Supplier Group Strategy Map for two public sector agencies. Two construction subsectors are examined in detail; construction and demolition waste and precast concrete. Both of these subsectors are critical to the economic and environmental sustainability performance of the construction sector and the community as a whole in the particular jurisdictions. The local and state government agencies who are at the core of the case studies rely individually on the performance of these sectors. The study is set within the context of a sound state purchasing policy that has however, had limited application by the two agencies. Partial results of the study are presented and early findings indicate that the standard risk versus expenditure procurement model does not capture the complexities of project, owner and government risk considerations. A new model is proposed in this paper, which incorporates the added dimension of time. The research results have numerous stakeholders; they will hold particular value for those interested in regional construction sector economics, government agencies who develop and implement policy and who have a large construction purchasing imprint and the players involved in the two subsectors. Even though this is a study in Australia it has widespread applicability as previous research indicates that procurement reform is of international significance and policy implementation is problematic.
Resumo:
This paper presents a secure communication protocol which can be used as the framework for an e-tendering scheme. This protocol is focused on securing the integrity of tendering documents and ensuring that a secure record of document generation is kept. Our protocol provides a mechanism to manage e-tendering contract evidence as a legal record in a unique and effective manner. It is the starting point of reliable record keeping. To a certain extent, it also addresses existing security problems in the traditional tendering processes.
Resumo:
Construction projects are faced with a challenge that must not be underestimated. These projects are increasingly becoming highly competitive, more complex, and difficult to manage. They become ‘wicked problems’, which are difficult to solve using traditional approaches. Soft Systems Methodology (SSM) is a systems approach that is used for analysis and problem solving in such complex and messy situations. SSM uses “systems thinking” in a cycle of action research, learning and reflection to help understand the various perceptions that exist in the minds of the different people involved in the situation. This paper examines the benefits of applying SSM to wicked problems in construction project management, especially those situations that are challenging to understand and difficult to act upon. It includes relevant examples of its use in dealing with the confusing situations that incorporate human, organizational and technical aspects.
Resumo:
Construction projects are faced with a challenge that must not be underestimated. These projects are increasingly becoming highly competitive, more complex, and difficult to manage. They become problems that are difficult to solve using traditional approaches. Soft Systems Methodology (SSM) is a systems approach that is used for analysis and problem solving in such complex and messy situations. SSM uses “systems thinking” in a cycle of action research, learning and reflection to help understand the various perceptions that exist in the minds of the different people involved in the situation. This paper examines the benefits of applying SSM to problems of knowledge management in construction project management, especially those situations that are challenging to understand and difficult to act upon. It includes five case studies of its use in dealing with the confusing situations that incorporate human, organizational and technical aspects.
Resumo:
Construction organisations comprise geographically dispersed virtually-linked suborganisations that work together to realise projects. They increasingly do so using information and communication technology (ICT) to communicate, coordinate their activities and to solve complex problems. One salient problem they face is how to effectively use requisite ICT tools. One important tool at their disposal is the self-help group, a body of people that organically spring up to solve shared problems. The more recognised term for this organisational form is a community of practice (COP). COPs generate knowledge networks that enhance and sustain competitive advantage and they are also used to help COP members actually use ICT tools. Etienne Wenger defines communities of practice as “groups of people informally bound together by shared expertise and passion for a joint enterprise” (Wenger and Snyder 2000, p139). This ‘chicken-or-egg’ issue about needing a COP to use the tools that are needed to effective broaden COPs (beyond co-located these groups) led us to explore how best to improve the process of ICT diffusion through construction organisations— primarily using people supported by technology that improves knowledge sharing. We present insights gained from recent PhD research results in this area. A semistructured interview approach was used to collect data from ICT strategists and users in the three large Australian construction organisations that are among the 10 or so first tier companies by annual dollar turnover in Australia. The interviewees were categorised into five organisational levels: IT strategist, implementer, project or engineering manager, site engineer and foreman. The focus of the study was on the organisation and the way that it implements ICT diffusion of a groupware ICT diffusion initiative. Several types of COP networks from the three Australian cases are identified: withinorganisation COP; institutional, implementer or technical support; project manager/engineer focussed; and collegial support. Also, there are cross-organisational COPs that organically emerge as a result of people sharing an interest or experience in something significant. Firstly, an institutional network is defined as a strategic group, interested in development of technology innovation within an organisation. This COP principally links business process domain experts with an ICT strategist.
Resumo:
Our survey findings confirm that 11 factors influence information and communication technology (ICT) diffusion for experienced ICT users. We offer a model that consists of 4 groups of categories: management (M); individual (I); technology (T); and environment (E). Our conclusions reinforce the importance of a coherent ICT diffusion strategy and supportive environment. This requires substantial investment in training and collegial learning support mechanisms. This paper provides an overview of the work undertaken and an analysis of its implications for the construction industry and we provide useful insights that a wide range of construction industry professionals and contractors may find useful.
Resumo:
Many people and organisations continually repeat mistakes or fail to take advantage of opportunities because they have not learned from their past history, frequently as a result of not having taken the time to reflect and take stock of their experiences. This common error is avoidable, particularly with today’s capacity for information and communication technology (ICT) to enable organisations to not only record lessons learned but to easily make these available throughout an organisation. Moreover, the evidence of the literature and experience suggests that currently companies do not rigorously analyse past experience and log lessons learned using manual methods so it is hardly surprising that this trend is not changed by the availability of ICT.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the consultants’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the head contractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o Since there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The Guide contains the distilled findings from a major, two-year research project to explore those factors considered by industry practitioners to be critical to the successful adoption of ICT, both within their firms and between their firms and their trading partners. In the context of this project Critical Success Factors (CSFs) have been defined as, “Those things that absolutely, positively must be attended to in order to maximise the likelihood of a successful outcome for the stakeholder, defined in the stakeholder’s terms.” The guide includes: o Perceived benefits of ICT use across the subcontractors’ sector o Types and levels of ICT used across the sector o Self-assessment tool o CSFs for medium- and high-level ICT users, including o Best Practice Profiles o Action Statements o Barriers to ICT use for low-level users o Action Statements The material contained in this Guide has been generated following a number of principles: o For a given situation there is not a single ‘right answer’, but a number of solutions that have to be evaluated using a range of relevant factors. o As there are as many solutions as there are ‘solvers’, factors for evaluation will ‘emerge’ from collective wisdom.
Resumo:
The construction industry is a key national economic component. It tends to be at the forefront of cyclic changes in the Australian economy. It has a significant impact, both directly and indirectly, on the efficiency and productivity of other industries. Moreover it affects everyone to a greater or lesser extent; through its products whether they are manifested in the physical infrastructure that supports the operation of the economy or through the built environment that directly impacts on the quality of life experienced by individuals. In financial terms the industry makes one of the largest contributions to the Australian economy, accounting for 4.7 per cent of GDP 1 which was worth over $30B in 20012. The construction industry is comprised of a myriad of small firms, across several important sectors including, o Residential building, o Commercial building, o Building services, o Engineering, o Infrastructure o Facilities Management o Property Development Each sector is typified by firms that have distinctive characteristics such as the number of employees, size and value of contracts, number of jobs, and so forth. It tends to be the case that firms operating in commercial building are larger than those involved in residential construction. The largest contractors are found in engineering and infrastructure, as well as in the commercial building sub-sectors. However all sectors are characterised by their reliance upon sub-contractors to carry out on-site operations. Professionals from the various design consultant groups operate across all of these sectors. This description masks one of the most significant underlying causes of inefficiency in the construction industry, namely its fragmentation. The Construction Industry chapter of the 2004 Australian Year Book3, published by the Australian Bureau of Statistics unmasks the industry’s fragmented structure, typified by the large number of operating businesses within it, the vast majority of which are small companies employing less than 5 people. It identifies over 190,000 firms, of which over 90 percent employ less than 5 people. At the other end of the spectrum, firms employing 20 or more people account for fractionally more than one percent of businesses in the industry.