997 resultados para Problemas inversos (Equaçõesdiferenciais)
Resumo:
Relaxação Lagrangeana surrogate (Lagsur). Problema de atribuição generalizado. Problema do caxeiro viajante simétrico (PCV).
Resumo:
Este trabalho tem por objetivo apresentar uma abordagem integrada para diagnóstico, investigação e tratamentos de desordens (doenças, falhas de computadores, etc.). Nesta nova abordagem, denominada Teoria das Coberturas Nebulosas (TCN), o conhecimento é basicamente modelado através de associações causais e a inferência é abdutiva. Conceitos de Parsimonious Covering Theory (PCT), lógica nebulosa e teoria de decisão são também integrados, de maneira a tratar os vários aspectos inerentes aos processos envolvidos em raciocínio clínico. Por exemplo, a possibilidade de diversas desordens estarem conjuntamente causando um conjunto de manifestações, a manipulação de informações temporais, a consideração de condições favoráveis ao desenvolvimento de uma desordem, a incapacidade do especialista em oferecer conhecimento generalizado desprovido de incerteza e/ou imprecisão, a manipulação de fatores cruciais na tomada de decisão nas tarefas de investigação e tratamento como o custo e o risco são alguns dos aspectos abordados neste trabalho. A validação do modelo teórico foi realizada em fitopatologia, abordando especificamente a diagnose, investigação e tratamento de doenças de milho. Entretanto, devido a sua generalidade, espera-se que os desenvolvimentos teóricos obtidos possam ser aplicados para resolver problemas de diagnóstico em outras áreas de conhecimento.
Resumo:
Problemas de localização. Descrição do algoritmo genético construtivo.
Resumo:
O objetivo deste trabalho é mostrar os sistemas de apoio à decisão desenvolvidos para solucionar problemas de localização e roteamento, composto pelos novos enfoques de algoritmos de localização e roteamento e sistemas de informação geográfica Spring, Map Objects, Transcard e Arc View.
Resumo:
p.213-223
Resumo:
p.173-186
Resumo:
Este trabajo se centra en la resolución de problemas y en el uso de materiales didácticos. En primero lugar, describiremos cada uno de estos elementos y las relaciones que existen entre ambos. Seguidamente, basándonos en la importancia de estas relaciones, describiremos el taller y particularizaremos en las tareas propuestas y en la utilización de algunos materiales para la resolución de problemas.
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.
Resumo:
En este trabajo se presenta una metodología de investigación basada en la resolución de problemas para el análisis del razonamiento inductivo que llevan a cabo un grupo de 359 estudiantes que cursan 3¼ y 4¼ de ESO en España. Tras la justificación del interés en considerar las progresiones aritméticas de números naturales de órdenes 1 y 2 como contenido matemático, se muestran las variables que han permitido identificar unos tipos de problemas adecuados para nuestro objetivo de investigación relacionados con ese contenido matemático. Finalmente, se considera la prueba escrita individual como modo de recogida de información y se introduce la forma en que se realiza la corrección de los problemas seleccionados teniendo en cuenta el razonamiento inductivo y las variables consideradas para la selección de los tipos de problemas.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
Este trabajo presenta una interrelación del marco teórico de la evaluación PISA 2003 enmatemáticas y resolución de problemas en términos curriculares. Se sostiene que la nociónde competencia, hilo argumental del estudio, establece un planteamiento funcional de lasmatemáticas escolares. Esta articulación teórica tiene una lectura en términos de objetivos(competencias), contenidos (matemáticas escolares), metodología (matematización) y evaluación(tareas contextualizadas), cuya coherencia aquí se presenta y valora.Palabras clave: marco teórico, PISA, matemáticas, resolución de problemas,
Resumo:
El principal objetivo de nuestro trabajo es conseguir una alternativa multimedia al tratamiento, en clase, de la resolución de problemas; una presentación que atraiga la atención del alumnado en clase de matemáticas facilitando así la tarea al profesor, dotándolo de una herramienta adicional para trabajar empíricamente. Este trabajo multimedia de resolución de problemas supone un material novedoso para el aula, que vendrá a formar parte de las herramientas de que dispondrá el profesorado de matemáticas para despertar entre su alumnado el interés y el ánimo por disfrutar con las matemáticas; éste ha sido nuestro objetivo primordial a la hora de idear y más tarde crear este trabajo.
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.