261 resultados para Prismatic baling
Resumo:
Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:
1. Embedded Epitaxy
This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.
2. Barrier Controlled PNPN Laser Diode
It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.
3. Injection Lasers on Semi-Insulating Substrates
GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.
Resumo:
Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.
The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.
Resumo:
Esta tese tem por objetivo investigar as trajetórias intelectuais de Anatol Rosenfeld e Otto Maria Carpeaux. Exilados no Brasil durante a década de 30 do século passado, em função do avanço do nazifascismo na Europa, o alemão Rosenfeld e o austríaco Carpeaux souberam reinventar suas existências na nova terra, transformando-se em dois dos maiores críticos literários do país. Além de examinar os itinerários percorridos por ambos os autores, esta tese terá como foco analisar a relação entre exílio e atividade intelectual, promovendo uma reflexão a respeito do lugar das cidades de Berlim e Viena na construção do arcabouço espiritual de Rosenfeld e Carpeaux. Este estudo também tratará das suas primeiras produções em solo brasileiro, bem como da recepção que obtiveram de seus anfitriões, delineando, assim, os contornos de uma complexa atmosfera intelectual marcada por uma espécie de cordialidade literária. Como último objetivo, esta tese debaterá o processo de modelagem do self por meio do qual ambos os críticos conseguiram aprimorar a própria individualidade, tornando-se, enfim, figuras cuja memória deve ser recuperada.
Resumo:
Os estudos anatômicos do xilema secundário têm contribuído com a botânica sistemática na segregação de grupos taxonômicos. Desta forma, podendo se tornar muito importante na aplicação para identificação de espécies, o que adquire maior conotação em grupos de comprovada importância econômica. O gênero Stryphnodendron apresenta uma ampla distribuição no Brasil e as espécies que o compõem são muito utilizadas com finalidades farmacológicas, no entanto existem espécies que são morfologicamente muito semelhantes neste gênero. Sendo assim, este trabalho teve como objetivos descrever a estrutura anatômica do lenho de sete espécies do gênero Stryphnodendron, identificar os caracteres que poderão ser utilizados na segregação do grupo e verificar se a anatomia do lenho corrobora a proposta de delimitação de S. polyphyllum, feitas no último trabalho de revisão taxonômica do gênero. Foram selecionadas duas espécies paucifolioladas e cinco espécies multifolioladas, o material botânico foi obtido por coleta in situ para as espécies de ocorrência na Mata Atlântica e a partir de coleções de madeira de referência para as espécies de Cerrado e Floresta Amazônica. Foram utilizadas as metodologias usuais para anatomia do lenho e as descrições seguiram em linhas gerais as recomendações a IAWA Committee. Os resultados demonstraram que as espécies apresentam características anatômicas em comum, que podem ser diagnósticas para o gênero Stryphnodendron como: camada de crescimento distinta, raios homogêneos, cristais formando séries cristalíferas no parênquima axial e nas fibras, pontoações ornamentadas e parênquima axial paratraqueal. Os resultados das análises de agrupamento e de componentes principais evidenciaram a segregação das espécies em dois grupos, um com as espécies multifolioladas e outro com espécies paucifolioladas. As espécies paucifolioladas foram segregadas por apresentarem diâmetro tangencial dos vasos superior a 200 μm e parênquima axial difuso em agregados. Os resultados também evidenciaram um conjunto de caracteres que permitiram a individualização das espécies estudadas. As características qualitativas do lenho mais importantes para segregação das espécies em questão foram: tipos de parênquima axial e de demarcação da camada de crescimento; arranjo e agrupamento dos elementos de vasos; presença de fibras gelatinosas, de fibras septadas e de espessamento helicoidal em fibras. As características quantitativas foram: frequência de vasos; comprimento das fibras; número de células na largura dos raios; altura e largura dos raios e diâmetro das pontoações parênquimo-vasculares.
Resumo:
The microscale abrasion or ball-cratering test is being increasingly applied to a wide range of bulk materials and coatings. The response of materials to this test depends critically on the nature of the motion of the abrasive particles in the contact zone: whether they roll and produce multiple indentations in the coating, or slide causing grooving abrasion. Similar phenomena also occur when hard contaminant particles enter a lubricated contact. This paper presents simple quantitative two-dimensional models which describe two aspects of the interaction between a hard abrasive particle and two sliding surfaces. The first model treats the conditions under which a spherical abrasive particle of size d can be entrained into the gap between a rotating sphere of radius R and a plane surface. These conditions are determined by the coefficients of friction between the particle and the sphere, and the particle and the plane, denoted by μs and μp respectively. This model predicts that the values of (μs + μp) and 2μs should both exceed √2d/R for the particles to be entrained into the contact. If either is less than this value, the particle will slide against the sphere and never enter the contact. The second model describes the mechanisms of abrasive wear in a contact when an idealized rhombus-sectioned prismatic particle is located between two parallel plane surfaces separated by a certain distance, which can represent either the thickness of a fluid film or the spacing due to the presence of other particles. It is shown that both the ratio of particle size to the separation of the surfaces and the ratio of the hardnesses of the two surfaces have important influences on the particle motion and hence on the mechanism of the resulting abrasive wear. Results from this model are compared with experimental observations, and the model is shown to lead to realistic predictions. © IMechE 2003.
Resumo:
Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.
Resumo:
To meet targeted reductions in CO 2 emissions by 2050, demand for metal must be cut, for example through the use of lightweight technologies. However, the efficient production of weight optimized components often requires new, more flexible forming processes. In this paper, a novel hot rolling process is presented for forming I-beams with variable cross-section, which are lighter than prismatic alternatives. First, the new process concept is presented and described. A detailed computational and experimental analysis is then conducted into the capabilities of the process. Results show that the process is capable of producing defect free I-beams with variations in web depth of 30-50%. A full analysis of the process then indicates the likely failure modes, and identifies a safe operating window. Finally, the implications of these results for producing lightweight beams are discussed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied to the burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) a prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model, in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally, good agreement in the results of the calculations obtained using different methods and codes was observed.
Resumo:
Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.
Resumo:
A process is presented for the forming of variable cross-section I-beams by hot rolling. Optimized I-beams with variable cross-section offer a significant weight advantage over prismatic beams. By tailoring the cross-section to the bending moment experienced within the beam, around 30% of the material can be saved compared to a standard section. Production of such beams by hot rolling would be advantageous, as It combines high volume capacity with high material yields. Through controlled variation of the roll gap during multiple passes, beams with a variable cross-section have been created using shaped rolls similar to those used for conventional I-beam rolling. The process was tested experimentally on a small scale rolling mill, using plasticine as the modelling material. These results were then compared to finite element simulations of individual stages of the process conducted using Abaqus/Standard. Results here show that the process can successfully form a beam with a variable depth web. The main failure modes of the process, and the limitations on the achievable variations In geometry are also presented. Finally, the question of whether or not optimal beam geometries can be created by this process Is discussed. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.
Resumo:
The crystalline syndiotatic 1,2-polybutadiene was synthesized with a catalyst consisting of iron acetylacetonate (Fe(acac)(3))-triisobutylaluminum (Al(i-Bu)(3))-diethyl phosphite (DEP), and the effects of crystal growth conditions on morphology of thin films of the polymer were investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The polymer with melting point 179 degreesC was found to have 89.3% 1,2-content and 86.5% syndiotacticity by C-13 NMR measurement. The results of electron microscopic studies indicate that the solution-cast thin films of the syndiotatic 1,2-polybutadiene consist of lath-like lamellae with the c-axis perpendicular to the film plane, while a- and b-axes are in the film plane. The morphology of isothermally crystallized thin films of the polymer is temperature dependent. At lower crystallization temperatures (130 degreesC), a spherulitic structure consisting of flat-on lamellae is formed. With an increase in the crystallization temperature (e.g., at 140 degreesC), the spherulites and single faceted crystals coexist. At higher crystallization temperatures (150 degreesC), single crystals with a hexagonal prismatic shape are produced.
Resumo:
The crystal structure of a novel macrocyclic ligand complex of Pr-III, C112H178O52N8S4Pr2, [Pr2L2(HL)(2)(H2O)(6)]. 22H(2)O is reported. The macrocyclic ligand has pendant acetic acid through which the ligand is coordinated to the Pr-III ion. For the dimeric unit, [Pr2L2(HL)(2)(H2O)(6)], two Pr-III ions are connected by two bridging-chelating carboxyl groups and two bridging carboxyl groups of the ligands, and each Pr-III ion is also bonded to a unidentate carboxyl group of the ligand and three water molecules. The dimeric units are bridged by four ligands through their carboxyl groups to form an infinite one-dimensional chain. The coordination number of the Pr-III ion is nine, with a distorted tricapped trigonal prismatic configuration. (C) 1997 Elsevier Science Ltd.
Resumo:
The great deal of joints and faults , existing in the rock mass , are the leading cause of discontinuous rock mass. Structural planes not only destroy the integrality of rock mass, but also lead nonlinearity、heterogeneity、anisotropy and failure mode on mechanical properties of rock mass. Therefore the selection of strength and deformation parameters was very difficult. In practical rock mass engineering, equivalent parameters of rock mass were selected by the method of expert experience and engineering analogy. Based on the fine description of discontinuous joints in the type Ⅳ and Ⅴ rock mass and geological survey datum in situ, models was obtained by generalizing the structure of rock mass by the method of statistical analysis. Model intensity and deformation test were carried out on the true triaxial apparatus. Intermediate principle stress effect, anisotropy and dimension effect of discontinuous rock mass were considered in the model test. 3-D correction to Hoek-Brown empirical criterion was done by analysed the test datum. Detailed works were listed as follows: (1) The factors influenced intensity and deformation of discontinuous joints rock mass were the value of 、continuity, density and included angle of joints and anisotropy of joint plane. True triaxial intensity and deformation tests were carried out by considering above factors. The influence rule was obtained and corresponding relation formulary was established; (2) Based on the true triaxial tests under different stress path and load modes, we obtain intensity and deformation rule of rock mass; (3) Based on a great deal of true triaxial tests and other test datum, correction to the Hoek-Brown empirical criterion was done in the chapter 4. The intermediate principle stress was considered in the corrected formulary. It indicated that the formulary was applicable under a certain condition. In addition, the yield plane form of corrected Hoek-Brown empirical criterion under principle stress space was described in the paper. And the question of corner of yield plane was discussed; (4) Based on the single discontinuity theory, the three-dimensional intensity formulary of discontinuous joint rock mass was established. Correction to the intensity formulary was done considering intermediate principle stress effect. We may obtain the conclusion that the intensity of the discontinuous joint rock mass was influenced on compositive factors. They were 、 、continuity、internal frictional angle and cohesiveness of joint plane and rock; (5) The results of the true triaxial model test was applied into parameters evaluation of dam foundation rock mass of JinPing hydropower station. For there were abundant ophicalcite in the dam foundation, the interval of intensity and formation parameters influenced on continuity were determined based on test datum. (6) Especial mould for prismatic jointing model was designed. True triaxial intensity and deformation tests by Basalt with prismatic jointing were carried out. The influence of intermediate principle stress, stress path, anisotropy effect and dimensional effect to intensity and deformation was discussed in the chapter 6. The work of (3)、(4)、(6) was significative supplement and innovation to current test and theory.