821 resultados para Prism
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
neral expressions have been derived for the intensities of the three classes of Raman lines namely totally symmetric A, doubly degenerate E and triply degenerate F, in the case of cubic crystals under the following conditions. The direction of the incident beam which is polarised with its electric vector inclined at an angle α to the normal to the scattering plane makes an angle Θ with one of the cubic axes of the crystal. The transversely scattered light is analysed by a double image prism with its principal axes inclined at angle β to the normal to the scattering plane, which is horizontal. For incident unpolarised light and Θ=22 1/2°, and the scattered light being analysed by a double image prism rotated through 45° from the position when its principal axes are vertical and horizontal ρ{variant} for A lines is equal to one, for E lines >1 and for F lines <1. This gives a method of classifying the Raman lines of a cubic crystal in a single setting. The results have been experimentally verified in sodium chlorate.
Resumo:
The dissertation examines the foreign policies of the United States through the prism of science and technology. In the focal point of scrutiny is the policy establishing the International Institute for Applied Systems Analysis (IIASA) and the development of the multilateral part of bridge building in American foreign policy during the 1960s and early 1970s. After a long and arduous negotiation process, the institute was finally established by twelve national member organizations from the following countries: Bulgaria, Canada, Czechoslovakia, Federal Republic of Germany (FRG), France, German Democratic Republic (GDR), Great Britain, Italy, Japan, Poland, Soviet Union and United States; a few years later Sweden, Finland and the Netherlands also joined. It is said that the goal of the institute was to bring together researchers from East and West to solve pertinent problems caused by the modernization process experienced in industrialized world. It originates from President Lyndon B. Johnson s bridge building policies that were launched in 1964, and was set in a well-contested and crowded domain of other international organizations of environmental and social planning. Since the distinct need for yet another organization was not evident, the process of negotiations in this multinational environment enlightens the foreign policy ambitions of the United States on the road to the Cold War détente. The study places this project within its political era, and juxtaposes it with other international organizations, especially that of the OECD, ECE and NATO. Conventionally, Lyndon Johnson s bridge building policies have been seen as a means to normalize its international relations bilaterally with different East European countries, and the multilateral dimension of the policy has been ignored. This is why IIASA s establishment process in this multilateral environment brings forth new information on US foreign policy goals, the means to achieve these goals, as well as its relations to other advanced industrialized societies before the time of détente, during the 1960s and early 1970s. Furthermore, the substance of the institute applied systems analysis illuminates the differences between European and American methodological thinking in social planning. Systems analysis is closely associated with (American) science and technology policies of the 1960s, especially in its military administrative applications, thus analysis within the foreign policy environment of the United States proved particularly fruitful. In the 1960s the institutional structures of European continent with faltering, and the growing tendencies of integration were in flux. One example of this was the long, drawn-out process of British membership in the EEC, another is de Gaulle s withdrawal from NATO s military-political cooperation. On the other hand, however, economic cooperation in Europe between East and West, and especially with the Soviet Union was expanding rapidly. This American initiative to form a new institutional actor has to be seen in that structural context, showing that bridge building was needed not only to the East, but also to the West. The narrative amounts to an analysis of how the United States managed both cooperation and conflict in its hegemonic aspirations in the emerging modern world, and how it used its special relationship with the United Kingdom to achieve its goals. The research is based on the archives of the United States, Great Britain, Sweden, Finland, and IIASA. The primary sources have been complemented with both contemporary and present day research literature, periodicals, and interviews.
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.
Resumo:
A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.
Resumo:
The mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis has been cloned, expressed, purified and crystallized and the crystals have been characterized using X-ray diffraction. The Matthews coefficient suggests the possibility of two lectin domains in the triclinic cell. The amino-acid sequence of the domain indicates structural similarity to well characterized beta-prism II fold lectins.
Resumo:
A new experimental technique is proposed to determine refractive indices of liquids and isotropic solids at different wavelengths. A Pellin-Broca hollow prism filled with a liquid sample produces the spectrum (of the liquid prism) on the photographic plate of the camera. A plane reflector, mounted at a small angle to the normal of the exit face of the prism, also forms a direct image of the collimator slit in the plane of the same photographic plate. All the necessary information for determining the refractive indices (for different wavelengths) is extracted directly from the spectrogram without using any goniometric system. Experiments are conducted with the liquid prisms of isopropyl alcohol, water, and benzene. The results of the experiments are compared with those obtained by a Pulfrich refractometer (critical angle method). The proposed new technique gives the refractive indices for visible and invisible spectral lines to an accuracy of 2x10(-5). (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.
Resumo:
The reaction of [Cp*TaCl(4)], 1 (Cp* = eta(5)-C(5)Me(5)), with [LiBH(4)center dot THF] at -78 degrees C, followed by thermolysis in the presence of excess [BH(3)center dot THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH} ] 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.
Resumo:
Template-assisted formation of multicomponent Pd6 coordination prisms and formation of their self-templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd?N/Pd?O coordination. Treatment of cis-[Pd(en)(NO3)2] with K3tma and linear pillar 4,4'-bpy (en=ethylenediamine, H3tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 (1) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma-encapsulating non-interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 (2). Though the same reaction using cis-[Pd(NO3)2(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 (3) along with non-interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 (3'), and the presence of H3tma as a guest gave H3tma-encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO3)2(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO3)2(pn)] gave non-interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.
Resumo:
The smooth DMS-FEM, recently proposed by the authors, is extended and applied to the geometrically nonlinear and ill-posed problem of a deformed and wrinkled/slack membrane. A key feature of this work is that three-dimensional nonlinear elasticity equations corresponding to linear momentum balance, without any dimensional reduction and the associated approximations, directly serve as the membrane governing equations. Domain discretization is performed with triangular prism elements and the higher order (C1 or more) interelement continuity of the shape functions ensures that the errors arising from possible jumps in the first derivatives of the conventional C0 shape functions do not propagate because the ill-conditioned tangent stiffness matrices are iteratively inverted. The present scheme employs no regularization and exhibits little sensitivity to h-refinement. Although the numerically computed deformed membrane profiles do show some sensitivity to initial imperfections (nonplanarity) in the membrane profile needed to initiate transverse deformations, the overall patterns of the wrinkles and the deformed shapes appear to be less so. Finally, the deformed profiles, computed through the DMS FEM-based weak formulation, are compared with those obtained through an experiment on an ultrathin Kapton membrane, wherein wrinkles form because of the applied boundary displacement conditions. Comparisons with a reported experiment on a rectangular membrane are also provided. These exercises lend credence to the feasibility of the DMS FEM-based numerical route to computing post-wrinkled membrane shapes. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Sixty-four sequences containing lectin domains with homologs of known three-dimensional structure were identified through a search of mycobacterial genomes. They appear to belong to the -prism II, the C-type, the Microcystis virdis (MV), and the -trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI-PLC, and the -grasp domains, respectively while mycobacterial -trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three-dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and nonpathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one or the other of the four lectin domains can be gleaned through the examination of homologs proteins, although the structure of none of them is available. Their biological role is also yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins. Proteins 2013. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.