983 resultados para Predictive control
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics
Resumo:
Työn tavoitteena oli vertailla paperikoneen lajinvaihdon säätötapoja. Vertailun kohteina olivat Metso Automationin IQGradeChange lajinvaihto-ohjelmisto ja operaattoreiden käsin tekemät lajinvaihdot. Kattavan tutkimusaineiston saamiseksi paperikoneen lajinvaihtodataa kerättiin seitsemän kuukauden ajan. Kerätyt lajinvaihdot käytiin läpi Matlab-ympäristössä lajinvaihtoaikojen selvittämiseksi. Lisäksi lajinvaihdoista laskettiin tuotannon muutokset ((t/h)/min) vanhan ja uudenlajin välillä, jotta päästiin selvyyteen lajinvaihdon laajuudesta ja eri lajinvaihtotapojen suorituskyvyistä. Koeajojaksona paperikoneelta kerättiin kaikkiaan 130 lajinvaihdon tiedot. Näistä lajinvaihdoista 58 tehtiin IQGradeChange lajinvaihto-ohjelmistolla ja 72 oli operaattoreiden käsin tekemiä lajinvaihtoja. Kerätyistä 130 lajinvaihdosta 27 kappaletta päättyi ratakatkoon. Yhtenä tehtävänä olikin tutkia katkoon päättyneitä lajinvaihtoja.
Resumo:
Tässä diplomityössä määritellään biopolttoainetta käyttävän voimalaitoksen käytönaikainen tuotannon optimointimenetelmä. Määrittelytyö liittyy MW Powerin MultiPower CHP –voimalaitoskonseptin jatkokehitysprojektiin. Erilaisten olemassa olevien optimointitapojen joukosta valitaan tarkoitukseen sopiva, laitosmalliin ja kustannusfunktioon perustuva menetelmä, jonka tulokset viedään automaatiojärjestelmään PID-säätimien asetusarvojen muodossa. Prosessin mittaustulosten avulla lasketaan laitoksen energia- ja massataseet, joiden tuloksia käytetään seuraavan optimointihetken lähtötietoina. Optimoinnin kohdefunktio on kustannusfunktio, jonka termit ovat voimalaitoksen käytöstä aiheutuvia tuottoja ja kustannuksia. Prosessia optimoidaan säätimille annetut raja-arvot huomioiden niin, että kokonaiskate maksimoituu. Kun laitokselle kertyy käyttöikää ja historiadataa, voidaan prosessin optimointia nopeuttaa hakemalla tilastollisesti historiadatasta nykytilanteen olosuhteita vastaava hetki. Kyseisen historian hetken katetta verrataan kustannusfunktion optimoinnista saatuun katteeseen. Paremman katteen antavan menetelmän laskemat asetusarvot otetaan käyttöön prosessin ohjausta varten. Mikäli kustannusfunktion laskenta eikä historiadatan perusteella tehty haku anna paranevaa katetta, niiden laskemia asetusarvoja ei oteta käyttöön. Sen sijaan optimia aletaan hakea deterministisellä optimointialgoritmilla, joka hakee nykyhetken ympäristöstä paremman katteen antavia säätimien asetusarvoja. Säätöjärjestelmä on mahdollista toteuttaa myös tulevaisuutta ennustavana. Työn käytännön osuudessa voimalaitosmalli luodaan kahden eri mallinnusohjelman avulla, joista toisella kuvataan kattilan ja toisella voimalaitosprosessin toimintaa. Mallinnuksen tuloksena saatuja prosessiarvoja hyödynnetään lähtötietoina käyttökatteen laskennassa. Kate lasketaan kustannusfunktion perusteella. Tuotoista suurimmat liittyvät sähkön ja lämmön myyntiin sekä tuotantotukeen, ja suurimmat kustannukset liittyvät investoinnin takaisinmaksuun ja polttoaineen ostoon. Kustannusfunktiolle tehdään herkkyystarkastelu, jossa seurataan katteen muutosta prosessin teknisiä arvoja muutettaessa. Tuloksia vertaillaan referenssivoimalaitoksella suoritettujen verifiointimittausten tuloksiin, ja havaitaan, että tulokset eivät ole täysin yhteneviä. Erot johtuvat sekä mallinnuksen puutteista että mittausten lyhyehköistä tarkasteluajoista. Automatisoidun optimointijärjestelmän käytännön toteutusta alustetaan määrittelemällä käyttöön otettava optimointitapa, siihen liittyvät säätöpiirit ja tarvittavat lähtötiedot. Projektia tullaan jatkamaan järjestelmän ohjelmoinnilla, testauksella ja virityksellä todellisessa voimalaitosympäristössä ja myöhemmin ennustavan säädön toteuttamisella.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot
Resumo:
Considering the difficulty in the insulin dosage selection and the problem of hyper- and hypoglycaemia episodes in type 1 diabetes, dosage-aid systems appear as tremendously helpful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as the large intra-patient variability and food intake. This work addresses the prediction of glycaemia for a given insulin therapy face to parametric and input uncertainty, by means of modal interval analysis. As result, a band containing all possible glucose excursions suffered by the patient for the given uncertainty is obtained. From it, a safer prediction of possible hyper- and hypoglycaemia episodes can be calculated
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo