774 resultados para Prediction intervals
Resumo:
Based on a self-similar array model, we systematically investigated the axial Young's modulus (Y-axis) of single-walled carbon nanotube (SWNT) arrays with diameters from nanometer to meter scales by an analytical approach. The results show that the Y-axis of SWNT arrays decreases dramatically with the increases of their hierarchy number (s) and is not sensitive to the specific size and constitution when s is the same, and the specific Young's modulus Y-axis(s) is independent of the packing configuration of SWNTs. Our calculations also show that the Y-axis of SWNT arrays with diameters of several micrometers is close to that of commercial high performance carbon fibers (CFs), but the Y-axis(s) of SWNT arrays is much better than that of high performance CFs. (C) 2005 American Institute of Physics.
Resumo:
Background-The effectiveness of heart failure disease management proarams in patients under cardiologists` care over long-term follow-up is not established. Methods and Results-We investigated the effects of a disease management program with repetitive education and telephone monitoring on primary (combined death or unplanned first hospitalization and quality-of-life changes) and secondary end points (hospitalization, death, and adherence). The REMADHE [Repetitive Education and Monitoring for ADherence for Heart Failure] trial is a long-term randomized, prospective, parallel trial designed to compare intervention with control. One hundred seventeen patients were randomized to usual care, and 233 to additional intervention. The mean follow-up was 2.47 +/- 1.75 years, with 54% adherence to the program. In the intervention group, the primary end point composite of death or unplanned hospitalization was reduced (hazard ratio, 0.64; confidence interval, 0.43 to 0.88; P=0.008), driven by reduction in hospitalization. The quality-of-life questionnaire score improved only in the intervention group (P<0.003). Mortality was similar in both groups. Number of hospitalizations (1.3 +/- 1.7 versus 0.8 +/- 1.3, P<0.0001), total hospital days during the follow-up (19.9 +/- 51 versus 11.1 +/- 24 days, P<0.0001), and the need for emergency visits (4.5 +/- 10.6 versus 1.6 +/- 2.4, P<0.0001) were lower in the intervention group. Beneficial effects were homogeneous for sex, race, diabetes and no diabetes, age, functional class, and etiology. Conclusions-For a longer follow-up period than in previous studies, this heart failure disease management program model of patients under the supervision of a cardiologist is associated with a reduction in unplanned hospitalization, a reduction of total hospital days, and a reduced need for emergency care, as well as improved quality of life, despite modest program adherence over time. (Circ Heart Fail. 2008;1:115-124.)
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Background Heart failure and diabetes often occur simultaneously in patients, but the prognostic value of glycemia in chronic heart failure is debatable. We evaluated the role of glycemia on prognosis of heart failure. Methods Outpatients with chronic heart failure from the Long-term Prospective Randomized Controlled Study Using Repetitive Education at Six-Month Intervals and Monitoring for Adherence in Heart Failure Outpatients (REMADHE) trial were grouped according to the presence of diabetes and level of glycemia. All-cause mortality/heart transplantation and unplanned hospital admission were evaluated. Results Four hundred fifty-six patients were included (135 [29.5%] female, 124 [27.2%] with diabetes mellitus, age of w50.2 +/- 11.4 years, and left-ventricle ejection fraction of 34.7% +/- 10.5%). During follow-up (3.6 +/- 2.2 years), 27 (5.9%) patients were submitted to heart transplantation and 202 (44.2%) died; survival was similar in patients with and without diabetes mellitus. When patients with and without diabetes were categorized according to glucose range (glycemia <= 100 mg/dL [5.5 mmol/L]), as well as when distributed in quintiles of glucose, the survival was significantly worse among patients with lower levels of glycemia. This finding persisted in Cox proportional hazards regression model that included gender, etiology, left ventricle ejection fraction, left ventricle diastolic diameter, creatinine level and beta-blocker therapy, and functional status (hazard ratio 1.45, 95% CI 1.09-1.69, P = .039). No difference regarding unplanned hospital admission was found. Conclusion We report on an inverse association between glycemia and mortality in outpatients with chronic heart failure. These results point to a new pathophysiologic understanding of the interactions between diabetes mellitus, hyperglycemia, and heart disease. (Am Heart J 2010; 159: 90-7.)
Resumo:
A risk score model was developed based in a population of 1,224 individuals from the general population without known diabetes aging 35 years or more from an urban Brazilian population sample in order to select individuals who should be screened in subsequent testing and improve the efficacy of public health assurance. External validation was performed in a second, independent, population from a different city ascertained through a similar epidemiological protocol. The risk score was developed by multiple logistic regression and model performance and cutoff values were derived from a receiver operating characteristic curve. Model`s capacity of predicting fasting blood glucose levels was tested analyzing data from a 5-year follow-up protocol conducted in the general population. Items independently and significantly associated with diabetes were age, BMI and known hypertension. Sensitivity, specificity and proportion of further testing necessary for the best cutoff value were 75.9, 66.9 and 37.2%, respectively. External validation confirmed the model`s adequacy (AUC equal to 0.72). Finally, model score was also capable of predicting fasting blood glucose progression in non-diabetic individuals in a 5-year follow-up period. In conclusion, this simple diabetes risk score was able to identify individuals with an increased likelihood of having diabetes and it can be used to stratify subpopulations in which performing of subsequent tests is necessary and probably cost-effective.
Resumo:
This study examined the utility of self-efficacy as a predictor of social activity and mood control in multiple sclerosis (MS). Seventy-one subjects with MS were recruited from people attending an MS centre or from a mailing list and were examined on two occasions that were two months apart. Clinic patients were more disabled than patients who completed assessments by post, but they were of higher socioeconomic status and were less dysphoric; We attempted to predict self-reported performance of mood control and social activity at two months, from self-efficacy or performance on these tasks at pretest. Demographic variables, disorder status, disability, self-esteem and depression were also allowed to compete for entry into multiple regressions. Substantial stability in mood, performance and disability was observed over the two months. In both mood control and social activity, past performance was the strongest predictor of later performance, but self-efficacy also contributed significantly to the prediction. The disability level entered a prediction of social activity; but no other variables predicted either type of performance. A secondary analysis predicting self-esteem at two months also included self-efficacy for social activity, illustrating the contribution of perceived capability to later assessments of self-worth. The study provided support for self-efficacy as a predictor of later behavioural outcomes and self-esteem in multiple sclerosis. (C) 1997 Elsevier Science Ltd.
Resumo:
Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bimanual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background & aims: Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Methods: Severely obese subjects (83 female/36 mate, mean age = 41.6 +/- 11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman`s graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. Results: BF estimations from BIA (64.8 +/- 15 kg) and ADP (65.6 +/- 16.4 kg) did not differ (p > 0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide Limit of agreement (- 10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p < 0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Conclusions: Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
The objective of this study was to find very early viral kinetic markers to predict nonresponse to hepatitis C virus (HCV) therapy in a group of human immunodeficiency virus (HIV)/HCV-coinfected patients. Twenty-six patients (15 HCV genotype-1 and 11 genotype-3) were treated with a 48-week regimen of peginterferon-alfa-2a (PEG-IFN) (180 mu g/week) and weight-based ribavirin (11 mg/kg/day). Samples were collected at baseline; 4, 8, 12, 18, 24, 30, 36 and 42 h; days 2, 3, 4, 7, 8, 15, 22, 29, 43 and 57 then weekly and monthly. Five patients discontinued treatment. Seven patients (27%) achieved a sustained virological response (SVR). Nadir HCV RNA levels were observed 1.6 +/- 0.3 days after initiation of therapy, followed by a 0.3- to 12.9-fold viral rebound until the administration of the second dose of PEG-IFN, which were not associated with SVR or HCV genotype. A viral decline < 1.19 log for genotype-1 and < 0.97 log for genotype-3, 2 days after starting therapy, had a negative predictive value (NPV) of 100% for SVR. The day 2 virological response had a similar positive predictive value for SVR as a rapid virological response at week 4. In addition, a second-phase viral decline slope (i.e., measured from day 2 to 29) < 0.3 log/week had a NPV = 100% for SVR. We conclude that first-phase viral decline at day 2 and second-phase viral decline slope (< 0.3 log/week) are excellent predictors of nonresponse. Further studies are needed to validate these viral kinetic parameters as early on-treatment prognosticators of nonresponse in patients with HCV and HIV.
Resumo:
Objective: To identify prediction factors for the development of leptospirosis-associated pulmonary hemorrhage syndrome (LPHS). Methods: We conducted a prospective cohort study. The study comprised of 203 patients, aged >= 14 years, admitted with complications of the severe form of leptospirosis at the Emilio Ribas Institute of Infectology (Sao Paulo, Brazil) between 1998 and 2004. Laboratory and demographic data were obtained and the severity of illness score and involvement of the lungs and others organs were determined. Logistic regression was performed to identify independent predictors of LPHS. A prospective validation cohort of 97 subjects with severe form of leptospirosis admitted at the same hospital between 2004 and 2006 was used to independently evaluate the predictive value of the model. Results: The overall mortality rate was 7.9%. Multivariate logistic regression revealed that five factors were independently associated with the development of LPHS: serum potassium (mmol/L) (OR = 2.6; 95% CI = 1.1-5.9); serum creatinine (mmol/L) (OR = 1.2; 95% CI = 1.1-1.4); respiratory rate (breaths/min) (OR = 1.1; 95% CI = 1.1-1.2); presenting shock (OR = 69.9; 95% CI = 20.1-236.4), and Glasgow Coma Scale Score (GCS) < 15 (OR = 7.7; 95% CI = 1.3-23.0). We used these findings to calculate the risk of LPHS by the use of a spreadsheet. In the validation cohort, the equation classified correctly 92% of patients (Kappa statistic = 0.80). Conclusions: We developed and validated a multivariate model for predicting LPHS. This tool should prove useful in identifying LPHS patients, allowing earlier management and thereby reducing mortality. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: Bronchial typical carcinoid tumors are tow-grade malignancies. However, metastases are diagnosed in some patients. Predicting the individual risk of these metastases to determine patients eligible for a radical lymphadenectomy and patients to be followed-up because of distant metastasis risk is relevant. Our objective was to screen for predictive criteria of bronchial typical carcinoid tumor aggressiveness based on a logistic regression model using clinical, pathological and biomolecular data. Methods: A multicenter retrospective cohort study, including 330 consecutive patients operated on for bronchial typical carcinoid tumors and followed-up during a period more than 10 years in two university hospitals was performed. Selected data to predict the individual risk for both nodal and distant metastasis were: age, gender, TNM staging, tumor diameter and location (central/peripheral), tumor immunostaining index of p53 and Ki67, Bcl2 and the extracellular density of neoformed microvessels and of collagen/elastic extracellular fibers. Results: Nodal and distant metastasis incidence was 11% and 5%, respectively. Univariate analysis identified all the studied biomarkers as related to nodal metastasis. Multivariate analysis identified a predictive variable for nodal metastasis: neo angiogenesis, quantified by the neoformed pathological microvessels density. Distant metastasis was related to mate gender. Discussion: Predictive models based on clinical and biomolecular data could be used to predict individual risk for metastasis. Patients under a high individual risk for lymph node metastasis should be considered as candidates to mediastinal lymphadenectomy. Those under a high risk of distant metastasis should be followed-up as having an aggressive disease. Conclusion: Individual risk prediction of bronchial typical carcinoid tumor metastasis for patients operated on can be calculated in function of biomolecular data. Prediction models can detect high-risk patients and help surgeons to identify patients requiring radical lymphadenectomy and help oncologists to identify those as having an aggressive disease requiring prolonged follow-up. (C) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Resumo:
PURPOSE. To assess whether baseline Glaucoma Probability Score (GPS; HRT-3; Heidelberg Engineering, Dossenheim, Germany) results are predictive of progression in patients with suspected glaucoma. The GPS is a new feature of the confocal scanning laser ophthalmoscope that generates an operator-independent, three-dimensional model of the optic nerve head and gives a score for the probability that this model is consistent with glaucomatous damage. METHODS. The study included 223 patients with suspected glaucoma during an average follow-up of 63.3 months. Included subjects had a suspect optic disc appearance and/or elevated intraocular pressure, but normal visual fields. Conversion was defined as development of either repeatable abnormal visual fields or glaucomatous deterioration in the appearance of the optic disc during the study period. The association between baseline GPS and conversion was investigated by Cox regression models. RESULTS. Fifty-four (24.2%) eyes converted. In multivariate models, both higher values of GPS global and subjective stereophotograph assessment ( larger cup-disc ratio and glaucomatous grading) were predictive of conversion: adjusted hazard ratios (95% CI): 1.31 (1.15 - 1.50) per 0.1 higher global GPS, 1.34 (1.12 - 1.62) per 0.1 higher CDR, and 2.34 (1.22 - 4.47) for abnormal grading, respectively. No significant differences ( P > 0.05 for all comparisons) were found between the c-index values ( equivalent to area under ROC curve) for the multivariate models (0.732, 0.705, and 0.699, respectively). CONCLUSIONS. GPS values were predictive of conversion in our population of patients with suspected glaucoma. Further, they performed as well as subjective assessment of the optic disc. These results suggest that GPS could potentially replace stereophotograph as a tool for estimating the likelihood of conversion to glaucoma.
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.