540 resultados para Polyelectrolyte Multilayers
Resumo:
Multilayers with a structure of Si/[Fe(10 nm)/CU(10 nm)](5) were deposited on Si(100) substrates and then irradiated at room temperature by using 2-MeV Xe20+. The modifications of the multilayers were characterized using a depth profile analysis of the Auger electron spectroscopy (AES) data and the evolution of crystallite structures of the multilayers were analyzed by using X-ray diffraction (XRD). The AES depth profiles indicated that de-mixing of the Fe and the Cu layers was observed at low ion fluences, but inter-mixing of the Fe and the Cu layers was found at high ion fluences and destroyed the layered structure of the multilayers. The obtained XRD patterns showed that, after irradiation by 2-MeV Xe20+ at; 2 x 10(16) ions/cm(2), the peaks of the multilayers related to a Cu-based fee solid solution and an Fe-based bee solid solution phase became visible, which implied that the inter-mixing at the Fe/Cu interface resulted in the formation of new phases. A possible mechanism of modification in the Fe/Cu multilayers induced by ion irradiation is briefly discussed.
Resumo:
Two kinds of Fe/Cu multilayers with different modulation wavelength were deposited on cleaved Si(100) substrates and then irradiated at room temperature using 400 keV Xe20+ in a wide range of irradiation fluences. As a comparison, thermal annealing at 300-900 degrees C was also carried out in vacuum. Then the samples were analyzed by XRD and the evolution of crystallite structures induced by irradiation was investigated. The obtained XRD patterns showed that, with increase of the irradiation fluence, the peaks of Fe became weaker, the peaks related to Cu-based fcc solid solution and Fe-based bcc solid solution phase became visible and the former became strong gradually. This implied that the intermixing at the Fe/Cu interface induced by ion irradiation resulted in the formation of the new phases which could not be achieved by thermal annealing. The possible intermixing mechanism of Fe/Cu multilayers induced by energetic ion irradiation was briefly discussed.
Resumo:
Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.
Resumo:
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. (C) 2004 Elsevier Inc. All rights reserved.
Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template
Resumo:
We report a new approach for the synthesis of fluorescent and water-soluble Ag nanoclusters, using the common polyelectrolyte poly(methacrylic acid) as the template.
Resumo:
Autofluorescent single polyelectrolyte microcapsules, exemplified by poly-L-lysine (PLL), have been prepared through glutaraldehyde-mediated covalent layer-by-layer (LbL) assembly and subsequent core removal. CaCO3 microparticles were used as template cores for the LbL deposition and removed by treatment of ethylenediamine tetraacetic acid disodium salt (EDTA). The prepared microcapsules, without conjugating an exterior fluorochrome, exhibited evenly distributed fluorescence.
Resumo:
The size-controlled synthesis of monodispersed gold nanoparticles (AuNPs) stabilized by polyelectrolyte-functionalized ionic liquid (PFIL) is described. The resulting AuNPs' size, with a narrow distribution, can be tuned by the concentration of HAuCl4. Such PFIL-stabilized AuNPs (PFIL-AuNPs) showed a high stability in water at room temperature for at least one month; they were also quite stable in solutions of pH 7-13 and high concentration of NaCl.
Resumo:
Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.
Resumo:
RecA of Escherichia coli and its active nucleoprotein filaments with DNA are important for the genomic integrity and the genetic diversity. The formation of the DNA-RecA nucleoprotein filaments is a complex multiple-step process and can be affected by many factors. In this work, the effects of poly-L-lysine (PLL) on the DNA-RecA nucleoprotein filaments are investigated in vitro by agarose gel electrophoresis and atomic force microscopy (AFM). The observed morphologies vary with the concentration, the length, and the addition order of PLL. These distinctions provide information for the conformation change of DNA and the binding sites of RecA protein in the formation process of nucleoprotein filaments.
Resumo:
We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.
Resumo:
High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.