828 resultados para Playful Computing
Resumo:
Mobile technologies are enabling access to information in diverse environ.ments, and are exposing a wider group of individuals to said technology. Therefore, this paper proposes that a wider view of user relations than is usually considered in information systems research is required. Specifically, we examine the potential effects of emerging mobile technologies on end-‐user relations with a focus on the ‘secondary user’, those who are not intended to interact directly with the technology but are intended consumers of the technology’s output. For illustration, we draw on a study of a U.K. regional Fire and Rescue Service and deconstruct mobile technology use at Fire Service incidents. Our findings provide insights, which suggest that, because of the nature of mobile technologies and their context of use, secondary user relations in such emerging mobile environments are important and need further exploration.
Resumo:
Distributed computation and storage have been widely used for processing of big data sets. For many big data problems, with the size of data growing rapidly, the distribution of computing tasks and related data can affect the performance of the computing system greatly. In this paper, a distributed computing framework is presented for high performance computing of All-to-All Comparison Problems. A data distribution strategy is embedded in the framework for reduced storage space and balanced computing load. Experiments are conducted to demonstrate the effectiveness of the developed approach. They have shown that about 88% of the ideal performance capacity have be achieved in multiple machines through using the approach presented in this paper.
Resumo:
This paper uses transaction cost theory to study cloud computing adoption. A model is developed and tested with data from an Australian survey. According to the results, perceived vendor opportunism and perceived legislative uncertainty around cloud computing were significantly associated with perceived cloud computing security risk. There was also a significant negative relationship between perceived cloud computing security risk and the intention to adopt cloud services. This study also reports on adoption rates of cloud computing in terms of applications, as well as the types of services used.
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
This paper reports on the development of a playful digital experience, Anim-action, designed for young children with developmental disabilities. This experience was built using the Stomp platform, a technology designed specifically to meet the needs of people with intellectual disability through facilitating whole body interaction. We provide detail on how knowledge gained from key stakeholders informed the design of the application and describe the design guidelines used in the development process. A study involving 13 young children with developmental disabilities was conducted to evaluate the extent to which Anim-action facilitates cognitive, social and physical activity. Results demonstrated that Anim-action effectively supports cognitive and physical activity. In particular, it promoted autonomy and encouraged problem solving and motor planning. Conversely, there were limitations in the system’s ability to support social interaction, in particular, cooperation. Results have been analyzed to determine how design guidelines might be refined to address these limitations.
Resumo:
Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.
Resumo:
Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Resumo:
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.
Resumo:
Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
The research field of urban computing – defined as “the integration of computing, sensing, and actuation technologies into everyday urban settings and lifestyles” – considers the design and use of ubiquitous computing technology in public and shared urban environments. Its impact on cities, buildings, and spaces evokes innumerable kinds of change. Embedded into our everyday lived environments, urban computing technologies have the potential to alter the meaning of physical space, and affect the activities performed in those spaces. This paper starts a multi-themed discussion of various aspects that make up the, at times, messy and certainly transdisciplinary field of urban computing and urban informatics.
Resumo:
This paper presents a series of studies on situated interfaces for community engagement. Firstly, we identify five recurring design challenges as well as four common strategies used to overcome them. We then assess the effectiveness of these strategies through field studies with public polling interfaces. We developed two very different polling interfaces in the form of (1) a web application running on an iPad mounted on a stand, allowing one vote at a time, and (2) a playful full-body interaction application for a large urban screen allowing concurrent participation. We deployed both interfaces in an urban precinct with high pedestrian traffic and equipped with a large urban screen. Analysing discoverability and learnability of each scenario, we derive insights regarding effective ways of blending community engagement interfaces into the built environment, while attracting the attention of passers-by and communicating the results of civic participation.